Gene gun-based co-immunization of merozoite surface protein-1 cDNA with IL-12 expression plasmid confers protection against lethal Plasmodium yoelii in A/J mice

Vaccine ◽  
2003 ◽  
Vol 21 (13-14) ◽  
pp. 1432-1444 ◽  
Author(s):  
Tohru Sakai ◽  
Hajime Hisaeda ◽  
Yoko Nakano ◽  
Manxin Zhang ◽  
Miwa Takashima ◽  
...  
2002 ◽  
Vol 70 (11) ◽  
pp. 6013-6020 ◽  
Author(s):  
Jiraprapa Wipasa ◽  
Huji Xu ◽  
Morris Makobongo ◽  
Michelle Gatton ◽  
Anthony Stowers ◽  
...  

ABSTRACT Immunity induced by the 19-kDa fragment of Plasmodium yoelii merozoite surface protein 1 (MSP119) is dependent on high titers of specific antibodies present at the time of challenge and a continuing active immune response postinfection. However, the specificity of the active immune response postinfection has not been defined. In particular, it is not known whether anti-MSP119 antibodies that arise following infection alone are sufficient for protection. We developed systems to investigate whether an MSP119-specific antibody response alone both prechallenge and postchallenge is sufficient for protection. We were able to exclude antibodies with other specificities, as well as any contribution of MSP119-specific CD4+ T cells acting independent of antibody, and we concluded that an immune response focused solely on MSP119-specific antibodies is sufficient for protection. The data imply that the ability of natural infection to boost an MSP119-specific antibody response should greatly improve vaccine efficacy.


2004 ◽  
Vol 72 (10) ◽  
pp. 6172-6175 ◽  
Author(s):  
Lina Wang ◽  
Matthew W. Goschnick ◽  
Ross L. Coppel

ABSTRACT Oral immunization of mice with Escherichia coli-expressed Plasmodium yoelii merozoite surface protein 4/5 or the C-terminal 19-kDa fragment of merozoite surface protein 1 induced systemic antibody responses and protected mice against lethal malaria infection. A combination of these two proteins administered orally conferred improved protection compared to that conferred by either protein administered alone.


2000 ◽  
Vol 68 (5) ◽  
pp. 3019-3022 ◽  
Author(s):  
Peter Vukovic ◽  
P. Mark Hogarth ◽  
Nadine Barnes ◽  
David C. Kaslow ◽  
Michael F. Good

ABSTRACT Merozoite surface protein 1 (MSP-119) is a leading malaria vaccine candidate. Specific antibodies contribute to immunity; binding to macrophages is believed to represent the main action of malaria antibodies. We show that an MSP-119-specific immunoglobulin G3 (IgG3) monoclonal antibody can passively transfer protection to mice deficient in the α chain of Fc-γRI whose macrophages cannot bind IgG3.


2002 ◽  
Vol 70 (2) ◽  
pp. 820-825 ◽  
Author(s):  
Niklas Ahlborg ◽  
Irene T. Ling ◽  
Wendy Howard ◽  
Anthony A. Holder ◽  
Eleanor M. Riley

ABSTRACT Vaccination of mice with the 42-kDa region of Plasmodium yoelii merozoite surface protein 1 (MSP142) or its 19-kDa C-terminal processing product (MSP119) can elicit protective antibody responses in mice. To investigate if the 33-kDa N-terminal fragment (MSP133) of MSP142 also induces protection, the gene segment encoding MSP133 was expressed as a glutathione S-transferase (GST) fusion protein. C57BL/6 and BALB/c mice were immunized with GST-MSP133 and subsequently challenged with the lethal P. yoelii YM blood stage parasite. GST-MSP133 failed to induce protection, and all mice developed patent parasitemia at a level similar to that in naive or control (GST-immunized) mice; mice immunized with GST-MSP119 were protected, as has been shown previously. Specific prechallenge immunoglobulin G (IgG) antibody responses to MSP1 were analyzed by enzyme-linked immunosorbent assay and immunofluorescence. Despite being unprotected, several mice immunized with MSP133 had antibody titers (of all IgG subclasses) that were comparable to or higher than those in mice that were protected following immunization with MSP119. The finding that P. yoelii MSP133 elicits strong but nonprotective antibody responses may have implications for the design of vaccines for humans based on Plasmodium falciparum or Plasmodium vivax MSP142.


2008 ◽  
Vol 76 (8) ◽  
pp. 3817-3823 ◽  
Author(s):  
Solabomi A. Ogun ◽  
Laurence Dumon-Seignovert ◽  
Jean-Baptiste Marchand ◽  
Anthony A. Holder ◽  
Fergal Hill

ABSTRACT Highly purified protein antigens are usually poor immunogens; in practice, adjuvants are needed to obtain satisfactory immune responses. Plasmodium yoelii 19-kDa merozoite surface protein 1 (MSP119) is a weak antigen, but mice vaccinated with this antigen in strong adjuvants can survive an otherwise lethal parasite challenge. Fusion proteins comprising this antigen fused to the oligomerization domain of the murine complement inhibitor C4-binding protein (C4bp) and a series of homologues have been produced. These C4bp domains acted as adjuvants for the fused antigen; the MSP119-murine C4bp fusion protein induced protective immunity in BALB/c mice. Because this fusion protein also induced antibodies against circulating murine C4bp, distantly related C4bp oligomerization domains fused to the same antigen were tested. These homologous domains did not induce antibodies against murine C4bp and, surprisingly, induced higher antibody titers against the antigen than the murine C4bp domain induced. These results demonstrate a new adjuvantlike effect of C4bp oligomerization domains.


Sign in / Sign up

Export Citation Format

Share Document