Liquefaction induced lateral spread analysis using the CIP method

2001 ◽  
Vol 28 (8) ◽  
pp. 549-574 ◽  
Author(s):  
S. Hadush ◽  
A. Yashima ◽  
R. Uzuoka ◽  
S. Moriguchi ◽  
K. Sawada
Author(s):  
Xiaofeng Dai ◽  
Lideng Gan ◽  
Hao Yang

Abstract The genesis of internal multiples is complicated and identification is difficult as their velocities are similar to the velocity of primaries, so their residual time is short. The existing conventional methods for identifying multiples are mainly used on a single-common mid-point (CMP) or single line, so the result is indistinct and inaccurate. The concept of velocity spread is proposed, whereby multiples are identified by obtaining the lateral spread of energy clusters on the velocity spectrum. The proposed method uses image segmentation to binarise the velocity spectrum, obtain the spread of velocity, and identify and predict multiples on the plane via attribute spread slicing. In a 3D seismic of Sichuan, the multiples predicted are in good agreement with the known wells. The case shows that velocity spread analysis can quantitatively identify and predict multiples interference, and is complementary to the existing multiples identification method. It can be used to monitor the multiples suppression effect in seismic processing and analyse the interference of multiples in interpretation. In addition, the method has good practicability for evaluating the reliability of reservoir prediction results and reduces the risk of well location deployment during exploration.


2021 ◽  
Vol 11 (10) ◽  
pp. 4381
Author(s):  
Angela Lombardi ◽  
Nicola Amoroso ◽  
Alfonso Monaco ◽  
Sabina Tangaro ◽  
Roberto Bellotti

Currently the whole world is affected by the COVID-19 disease. Italy was the first country to be seriously affected in Europe, where the first COVID-19 outbreak was localized in the Lombardy region. The further spreading of the cases led to the lockdown of the most affected regions in northern Italy and then the entire country. In this work we investigated an epidemic spread scenario in the Lombardy region by using the origin–destination matrix with information about the commuting flows among 1450 urban areas within the region. We performed a large-scale simulation-based modeling of the epidemic spread over the networks related to three main motivations, i.e., work, study and occasional transfers to quantify the potential contribution of each category of travellers to the spread of the epidemic process. Our findings outline that the three networks are characterised by different weight dynamic growth rates and that the network “work” has a critical role in the diffusion phenomenon showing the greatest contribution to the epidemic spread.


1985 ◽  
Vol 33 (8) ◽  
pp. 837-839 ◽  
Author(s):  
A Messing ◽  
A Stieber ◽  
N K Gonatas

The resolution of indirect immunoperoxidase methods for localizing antigens on the surface of plasma membranes of cultured cells was tested using dissociated monolayer cultures of ciliary ganglion neurons prelabeled with cationic ferritin. Clusters of ferritin were produced on the cell surface by warming the cells to 37 degrees C after the ferritin, rabbit anti-ferritin, and goat anti-rabbit immunoglobulin coupled to horseradish peroxidase had all been applied. Intense 3,3'-diaminobenzidine tetrahydrochloride (DAB) staining was limited to the regions immediately surrounding the ferritin clusters. The lateral spread of the DAB reaction product beyond the outer ferritin particles in each cluster averaged 54-81 nm in four experiments. A second type of increased density, coinciding with the thickness of the plasma membrane, was also seen. These stained plasma membranes extended 161-339 nm from the ferritin clusters.


Author(s):  
Daniel A. Salinas ◽  
Izhar Ullah ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
John W. McClintic ◽  
...  

Abstract The effects of mainstream flow velocity, density ratio (DR), and coolant-to-mainstream mass flow ratio (MFR) were investigated on a vane endwall in a transonic, annular cascade. A blow down facility consisting of five vanes was used. The film cooling effectiveness was measured using binary pressure sensitive paint (BPSP). The mainstream flow was set using isentropic exit Mach numbers of 0.7 and 0.9. The coolant-to-mainstream density ratio varied from 1.0 to 2.0. The coolant to mainstream MFR varied from 0.75% to 1.25%. The endwall was cooled by eighteen discrete holes located upstream of the vane passage to provide cooling to the upstream half of the endwall. Due to the curvature of the vane endwall, the upstream holes provided uniform coverage entering the endwall passage. The coverage was effective leading to the throat of the passage, where the downstream holes could provide additional protection. Increasing the coolant flowrate increased the effectiveness provided by the film cooling holes. Increasing the density of the coolant increases the effectiveness on the endwall while enhancing the lateral spread of the coolant. Finally, increasing the velocity of the mainstream while holding the MFR constant also yields increased protection on the endwall. Over the range of flow conditions considered in this study, the binary pressure sensitive paint proved to be a valuable tool for obtaining detailed pressure and film effectiveness distributions.


Sign in / Sign up

Export Citation Format

Share Document