scholarly journals Identifying and predicting multiples based on spread of velocity spectrum

Author(s):  
Xiaofeng Dai ◽  
Lideng Gan ◽  
Hao Yang

Abstract The genesis of internal multiples is complicated and identification is difficult as their velocities are similar to the velocity of primaries, so their residual time is short. The existing conventional methods for identifying multiples are mainly used on a single-common mid-point (CMP) or single line, so the result is indistinct and inaccurate. The concept of velocity spread is proposed, whereby multiples are identified by obtaining the lateral spread of energy clusters on the velocity spectrum. The proposed method uses image segmentation to binarise the velocity spectrum, obtain the spread of velocity, and identify and predict multiples on the plane via attribute spread slicing. In a 3D seismic of Sichuan, the multiples predicted are in good agreement with the known wells. The case shows that velocity spread analysis can quantitatively identify and predict multiples interference, and is complementary to the existing multiples identification method. It can be used to monitor the multiples suppression effect in seismic processing and analyse the interference of multiples in interpretation. In addition, the method has good practicability for evaluating the reliability of reservoir prediction results and reduces the risk of well location deployment during exploration.

2011 ◽  
Author(s):  
Lifeng Liu ◽  
Sam Zandong Sun ◽  
Haiyang Wang ◽  
Haijun Yang ◽  
Jianfa Han ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6030
Author(s):  
Licheng Deng ◽  
Xingyue He ◽  
Surong He ◽  
Qingying Ren ◽  
Jiang Zhao ◽  
...  

In this work, the frequency doubling effect of thermoacoustic speakers is studied, and a method is analyzed to suppress the frequency doubling effect. Three cases were analyzed by superimposing the DC bias on the AC excitation: (1) DC is less than AC; (2) DC is equal to AC; (3) DC is greater than AC. We found that the frequency doubling effect can be well suppressed by superimposing a larger DC excitation on the AC excitation. The laser scribing technology was used to prepare graphene film in only one step, and the screen printing technology was used to prepare conductive electrodes. The microphone and B&K system was used to record the sound pressure level and study the suppression of frequency doubling effect. Finally, the sound pressure levels with the three different kinds of excitations were measured. The measured results show that they have a good agreement with the theoretical results. The suppression effect will be better when DC amplitude is greater than AC amplitude. Therefore, this work has certain reference significance for the further study and application of thermoacoustic speakers.


2001 ◽  
Vol 28 (8) ◽  
pp. 549-574 ◽  
Author(s):  
S. Hadush ◽  
A. Yashima ◽  
R. Uzuoka ◽  
S. Moriguchi ◽  
K. Sawada

1992 ◽  
Vol 07 (39) ◽  
pp. 3631-3638
Author(s):  
V.A. SALEEV ◽  
N.P. ZOTOV

The pT-spectra of J/Ψ in hadron-nucleus and nucleus-nucleus collisions at high energies are investigated in a model where gg→J/Ψg is assumed to be the dominant mechanism. The initial state scattering using the additive quark models is taken into account. We demonstrate good agreement between the J/ΨpT-spectra and our results. It is shown that the allowance for the quark re-scattering and J/Ψ absorption in nuclear matter makes it possible to describe at least the major part of the J/Ψ suppression effect in collisions of relativistic nuclei.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. IM11-IM20 ◽  
Author(s):  
Dengliang Gao ◽  
Haibin Di

Fracture characterization is fundamental to the reliable prediction of fractured reservoirs; however, it is difficult and expensive to obtain detailed fracture information required for reservoir prediction due to the lack of direct observational data in the subsurface. Here we develop seismic analysis methods to characterize fractured reservoirs based on reflection geometry related to bending and shearing of reservoir formations. Among various geometric attributes, we focus on extreme curvature and extreme flexure that are considered effective at detecting fractures. Extreme curvature refers to the signed absolute maximum curvature at a specific azimuth where the curve shape is the tightest, whereas extreme flexure refers to the signed absolute maximum gradient of curvature at a specific azimuth where the curve shape changes the most. We implement new algorithms based on analytical equations to calculate extreme curvature and extreme flexure along with the corresponding azimuth from 3D seismic data. Results from 3D seismic surveys demonstrate that the new algorithms help resolve structural details that are otherwise not easily discernible from regular amplitude and conventional attributes. Most importantly, the algorithms hold the potential to volumetrically detect and visualize fractures in an automatic and quantitative manner. We conclude that extreme curvature and extreme flexure attributes have important geologic implications for predicting fundamental fracture properties that are critical to fractured reservoir characterization in the subsurface.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2684 ◽  
Author(s):  
Li Yi ◽  
Lilong Zou ◽  
Motoyuki Sato

It is important to identify the thin cracks within the airport pavement layers. To achieve this goal, a practical interferometric approach using the Yakumo multistatic ground-penetrating radar system was developed to detect the slight variability in wave propagation velocity and/or thickness caused by the thin cracks. In comparison with the conventional common midpoint (CMP) velocity estimation method, the proposed method can provide much higher-resolution estimations of slight deviations in the velocity and thickness from their corresponding reference values in the undamaged asphalt through the comparison of two CMP datasets. These deviations can be obtained analytically instead of graphically extracted from the CMP velocity spectrum. The proposed approach was not only analyzed using the simulated datasets, but also practically demonstrated at both an experimental model site and an actual airport site. In the simulation tests, velocity deviations on the order of a few millimeters per nanosecond were detected, and the experimental results shows good agreement with the ground truth and coring samples. This method provides a novel way to inspect partially damaged pavement when the thin cracks are difficult to detect using the reflected signals.


Sign in / Sign up

Export Citation Format

Share Document