Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera)

2001 ◽  
Vol 115 (3) ◽  
pp. 395-404 ◽  
Author(s):  
Richard L. Lindroth ◽  
Brian J. Kopper ◽  
William F.J. Parsons ◽  
James G. Bockheim ◽  
David F. Karnosky ◽  
...  
Botany ◽  
2013 ◽  
Vol 91 (6) ◽  
pp. 343-348 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu ◽  
Steve Colombo ◽  
Junlin Li ◽  
Qing-Lai Dang

Comparative stress resistance of 1-year-old white birch (Betula papyrifera Marsh.), balsam poplar (Populus balsamifera L.), and trembling aspen (Populus tremuloides Michx.) seedlings was evaluated after exposure to freezing or defoliation. Photosynthesis in leaves surviving freezing (−5 °C) declined immediately after treatment, but nearly fully recovered within 3 weeks. Defoliation did not significantly increase photosynthesis in the remaining leaves. Refoliation occurred after freezing that killed terminal shoots and released current buds from apical dominance, while new leaves of larger size were produced through continuous growth of terminal shoots in 50% or 100% defoliation. Freezing and complete defoliation significantly reduced diameter and height growth in all species, whereas 50% defoliation did not affect growth. These results indicate some of the physiological and morphological responses to foliage loss in broadleaved boreal species that can help to maintain growth and productivity under a warming climate, which may result in more frequent damaging spring frosts and insect defoliation.


2008 ◽  
Vol 25 (3) ◽  
pp. 124-132 ◽  
Author(s):  
Eric K. Zenner ◽  
Klaus J. Puettmann

Abstract Early release from competitors can be used to influence the species composition, quality, and rate of development of young stands. Release strategies can vary in intensity, ranging from complete removal of competitors and infrequent future entries (early, heavy, infrequent [EHI]) to lighter entries that are repeated more frequently (early, light, often [ELO]). It is unclear, however, which strategy is more successful for producing high-quality birch sawtimber (Betula papyrifera Marsh.) in mixed stands with aspen (Populus tremuloides Michx.). We evaluated the effects of various release intensities on the growth and mortality of a 16–18-ft-tall natural aspen–paper birch stand in Minnesota following density reductions from 1,500–3,000 trees ac−1 (trees per acre [TPA]) to 750 (ELO750), 500 (EHI500), and 250 (EHI250) TPA. After 6 years, paper birch was overtopped by aspen and contributed only 14% of basal area in control plots, but it occupied all diameter classes and contributed 77–87% of basal area in release plots. The basal area and volume of all paper birch and of only paper birch crop trees (100 largest TPA) were highest in lightly released ELO750 and lowest in control plots. Growth of mean quadratic diameter, basal area, and volume of paper birch was 2–3 times higher in release plots but independent of release intensity. Early release is necessary to maintain paper birch dominance, but there is no short-term advantage among treatment intensities. Long-term growth simulations using the Forest Vegetation Simulator suggest that merchantable timber production was unaffected by release strategy but that the EHI250 strategy produced the most birch sawtimber (40 times as much as in ELO750).


2017 ◽  
Vol 43 (8) ◽  
pp. 817-830 ◽  
Author(s):  
Kristen Y. Heroy ◽  
Samuel B. St. Clair ◽  
Elizabeth A. Burritt ◽  
Juan J. Villalba

2010 ◽  
Vol 40 (11) ◽  
pp. 2215-2222 ◽  
Author(s):  
Victor G. Smith

Yield tables are used to identify trends in growing space efficiency (GSE) and to relate GSE to self-tolerance and intraspecific competition. The method is useful when data specifically collected for this purpose are not available. Plonski’s normal yield tables for jack pine (Pinus banksiana Lamb.), paper birch (Betula papyrifera Marshall), trembling aspen (Populus tremuloides Michx.), and black spruce (Picea mariana (Mill.) B.S.P.) are used. An exponential volume–age function was partitioned into volume–area and area–age functions. The exponents of these two components form the B/D ratio, which is used to determine the mode of the stand at a given time, e.g., if B/D is <3/2, then the stand is in area occupation mode, and if B/D is >3/2, then the stand is in area exploitation mode. The dominant mode is the one most responsive to availability of growth resources, showing greater acceleration when resources are plentiful and more rapid deceleration when resources are scarce. Jack pine and paper birch are identified as area occupiers, whereas trembling aspen and black spruce are area exploiters and are therfore self-tolerant. Asymmetric competition was deemed to be present for paper birch throughout the life of the stand on site class I and for trembling aspen on all sites prior to senescence.


Sign in / Sign up

Export Citation Format

Share Document