A conceptual model for sediment transport in combined sewer systems

1999 ◽  
Vol 39 (9) ◽  
1999 ◽  
Vol 39 (9) ◽  
pp. 39-46 ◽  
Author(s):  
Flemming Schlütter

This paper presents a numerical model capable of simulating sediment transport in combined sewer systems. The main objectives of the model are to model mass transport rates at the outlet from a catchment and at the same time obtaining qualitative information on erosion and deposition going on at different locations in the sewer system. The model is conceptual but based on deterministic computations of hydraulic conditions. The formulations used in the conceptual model (STSim) are presented as well as results from a sensitivity analysis. Finally, an example is given of a calibration event from a case study.


1998 ◽  
Vol 37 (1) ◽  
pp. 155-162
Author(s):  
Flemming Schlütter ◽  
Kjeld Schaarup-Jensen

Increased knowledge of the processes which govern the transport of solids in sewers is necessary in order to develop more reliable and applicable sediment transport models for sewer systems. Proper validation of these are essential. For that purpose thorough field measurements are imperative. This paper renders initial results obtained in an ongoing case study of a Danish combined sewer system in Frejlev, a small town southwest of Aalborg, Denmark. Field data are presented concerning estimation of the sediment transport during dry weather. Finally, considerations on how to approach numerical modelling is made based on numerical simulations using MOUSE TRAP (DHI 1993).


1996 ◽  
Vol 33 (9) ◽  
pp. 147-154 ◽  
Author(s):  
Ole Mark ◽  
Uros Cerar ◽  
Gustavo Perrusquía

The present paper presents an application of MOUSE ST, a general deterministic sediment transport model for sewer systems. MOUSE ST is used to predict the locations subjected to sedimentation in the sewer system of Ljubljana, Slovenia. The prediction is made by means of a sediment transport model with a movable bed. This model is run in parallel with the hydrodynamic MOUSE model. The results, in terms of locations with sediment deposits, are compared with field data from the sewer system in Ljubljana. Further, the model is used to predict the effect of the removal of the sediment deposits on the combined sewer overflows.


2017 ◽  
Vol 75 (9) ◽  
pp. 2025-2033
Author(s):  
M. Gunkel ◽  
E. Pawlowsky-Reusing

As part of the project KURAS, the Berliner Wasserbetriebe realized a field campaign in 2015 in order to increase the process knowledge regarding the behaviour of transported sediment in the pressure main leading from the pumpstation to the wastewater treatment plant. The field campaign was conducted because of a lack of knowledge about the general condition of the pressure main due to its bad accessibility and the suspicion of deposits caused by hydraulic underload. The practical evidence of the sediment transport performance of this part of the sewer system, dependent on different load cases, should present a basis for further analysis, for example regarding flushing measures. A positive side-effect of the investigation was the description of the amount of pollutants caused by different weather conditions in combined sewer systems and the alterations of the sewage composition due to biogenic processes during transport. The concept included the parallel sampling of the inflow at the pumpstation and the outflow at the end of the pressure main during different weather conditions. By calculating the inflow to the pressure main, as well as its outflow at different flow conditions, it was possible to draw conclusions in regard to the transport behaviour of sediment and the bioprocesses within an 8.5 km section of the pressure main. The results show clearly that the effects of sedimentation and remobilization depend on the flow conditions. The balance of the total suspended solids (TSS) load during daily variations in dry weather shows that the remobilization effect during the run-off peak is not able to compensate for the period of sedimentation happening during the low flow at night. Based on the data for dry weather, an average of 238 kg of TSS deposits in the pressure main remains per day. The remobilization of sediment occurs only due to the abruptly increased delivery rates caused by precipitation events. These high pollution loads lead to a sudden strain at the wastewater treatment plant. It was found that the sediment transport behaviour is characterized by sedimentation up to a flow velocity of 0.35 m/s, while remobilization effects occur above 0.5 m/s. The assumption of bad sediment transport performance in the pressure main was confirmed. Therefore, the results can be used as a basis for further analysis, for example regarding periodical flushing as a means of cleaning the pressure main. The findings, especially regarding the methods and processes, are transferable and can be applied to other pressure mains in combined sewer systems. Besides the outlined evaluation of the sediment transport behaviour of the pressure main, the collected data were used in the project to calibrate a sewer system model, including a water quality model for the catchment area, and as a contribution towards an early physically based sediment transport modelling in InfoWorks CS.


1992 ◽  
Vol 25 (8) ◽  
pp. 217-224 ◽  
Author(s):  
J. Beichert

The influence of various characteristics of combined sewer systems on the overflow load has been analysed by means of long-term simulation. Special attention was paid to the sewer sediment. A simulation model that has been developed for this purpose comprises an approach for the sediment transport. This approach has been calibrated by means of various values of pilot plants. It has been demonstrated that the importance of the first flush is dependent on the bottom slope. The ‘dry weather balance' has been defined as a parameter which allows the determination of the overflow load from sewer sediments.


Author(s):  
JOSE ANTA ◽  
JOAQUÍN SUÁREZ ◽  
ALFREDO JÁCOME ◽  
MANUEL REGUEIRO-PICALLO ◽  
JERÓNIMO PUERTAS ◽  
...  

1984 ◽  
Vol 16 (8-9) ◽  
pp. 311-325 ◽  
Author(s):  
N B Johansen ◽  
P Harremoës ◽  
M Jensen

Overflow from combined systems constitute an increasing source of pollution of receiving waters, as compared to daily wastewater discharges which undergo treatment to a still higher extent. The receiving water problems from overflows are significant both in a long term scale (mean annual load) and in a short term scale (extreme event load). A method for computation of both annual and extreme load is presented. It is based on historical rain series and the use of a time-area model and simple pollutant mixing model in runoff calculation. Statistical calculations for both mean annual load and extreme events have been applied to the computed overflow series. Based on the computerized method simple manual calculations methods have been developed, resulting in graphs and tables for annual load and extreme load.


1995 ◽  
Vol 31 (7) ◽  
pp. 107-115 ◽  
Author(s):  
Ole Mark ◽  
Cecilia Appelgren ◽  
Torben Larsen

A study has been carried out with the objectives of describing the effect of sediment deposits on the hydraulic capacity of sewer systems and to investigate the sediment transport in sewer systems. A result of the study is a mathematical model MOUSE ST which describes sediment transport in sewers. This paper discusses the applicability and the limitations of various modelling approaches and sediment transport formulations in MOUSE ST. Further, the paper presents a simple application of MOUSE ST to the Rya catchment in Gothenburg, Sweden.


1995 ◽  
Vol 32 (2) ◽  
pp. 95-103
Author(s):  
José A. Revilla ◽  
Kalin N. Koev ◽  
Rafael Díaz ◽  
César Álvarez ◽  
Antonio Roldán

One factor in determining the transport capacity of coastal interceptors in Combined Sewer Systems (CSS) is the reduction of Dissolved Oxygen (DO) in coastal waters originating from the overflows. The study of the evolution of DO in coastal zones is complex. The high computational cost of using mathematical models discriminates against the required probabilistic analysis being undertaken. Alternative methods, based on such mathematical modelling, employed in a limited number of cases, are therefore needed. In this paper two alternative methods are presented for the study of oxygen deficit resulting from overflows of CSS. In the first, statistical analyses focus on the causes of the deficit (the volume discharged). The second concentrates on the effects (the concentrations of oxygen in the sea). Both methods have been applied in a study of the coastal interceptor at Pasajes Estuary (Guipúzcoa, Spain) with similar results.


Sign in / Sign up

Export Citation Format

Share Document