Evaporative water loss from the American alligator, Alligator mississippiensis: The relative importance of respiratory and cutaneous components and the regulatory role of the skin

1980 ◽  
Vol 67 (3) ◽  
pp. 439-446 ◽  
Author(s):  
John E. Davis ◽  
James R. Spotila ◽  
William C. Schefler
2014 ◽  
Vol 92 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Michaël Guillon ◽  
Gaëtan Guiller ◽  
Dale F. DeNardo ◽  
Olivier Lourdais

Terrestrial ectotherms predominantly use behavioural means to thermoregulate and thereby optimize performances. However, thermoregulation can impart physiological challenges to other critical processes such as water balance by increasing evaporative water loss (EWL). Like thermoregulation, water balance is influenced by both external factors (e.g., microhabitat and environmental constraints) and endogenous traits (e.g., evaporative water loss rates, dehydration tolerance). Although thermoregulation and water balance are tightly linked, the role of water balance is often overlooked when evaluating species climatic adaptation and response to global warming. We studied two congeneric viperid species (the Aspic Viper, Vipera aspis (L., 1758), and the Common Viper, Vipera berus (L., 1758)) with contrasted climatic affinities (south European versus boreal, respectively). These parapatric species are syntopic in narrow contact zones where microhabitat partitioning has been reported. We compared total EWL and cutaneous evaporative water loss (CEWL) of the two species and monitored the thermal and hydric conditions of the microhabitats used in syntopic populations. We found that the boreal V. berus has greater EWL, both total and cutaneous. Accordingly, this species selected more humid microhabitats throughout the year. Humidity appears to be an important determinant of habitat selection, and therefore, V. berus is likely vulnerable to changing precipitation at the southern limit of its distribution.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7885 ◽  
Author(s):  
Mohlamatsane Mokhatla ◽  
John Measey ◽  
Ben Smit

Temperature and water availability are two of the most important variables affecting all aspects of an anuran’s key physiological processes such as body temperature (Tb), evaporative water loss (EWL) and standard metabolic rate (SMR). Since anurans display pronounced sexual dimorphism, evidence suggests that these processes are further influenced by other factors such as vapour pressure deficit (VPD), sex and body mass (Mb). However, a limited number of studies have tested the generality of these results across a wide range of ecologically relevant ambient temperatures (Ta), while taking habitat use into account. Thus, the aim of this study was to investigate the role of Ta on Tb, whole-animal EWL and whole-animal SMR in three wild caught African anuran species with different ecological specialisations: the principally aquatic African clawed frog (Xenopus laevis), stream-breeding common river frog (Amietia delalandii), and the largely terrestrial raucous toad (Sclerophrys capensis). Experiments were conducted at a range of test temperatures (5–35 °C, at 5 °C increments). We found that VPD better predicted rates of EWL than Ta in two of the three species considered. Moreover, we found that Tb, whole-animal EWL and whole-animal SMR increased with increasing Ta, while Tb increased with increasing Mb in A. delalandii and S. capensis but not in X. laevis. Whole-animal SMR increased with increasing Mb in S. capensis only. We did not find any significant effect of VPD, Mb or sex on whole-animal EWL within species. Lastly, Mb did not influence Tb, whole-animal SMR and EWL in the principally aquatic X. laevis. These results suggest that Mb may not have the same effect on key physiological variables, and that the influence of Mb may also depend on the species ecological specialisation. Thus, the generality of Mb as an important factor should be taken in the context of both physiology and species habitat specialisation.


Biology Open ◽  
2016 ◽  
Vol 5 (12) ◽  
pp. 1799-1805 ◽  
Author(s):  
Francisco Herrerías-Azcué ◽  
Chris Blount ◽  
Mark Dickinson

2017 ◽  
Vol 13 (11) ◽  
pp. 20170537 ◽  
Author(s):  
Christine Elizabeth Cooper ◽  
Philip Carew Withers

‘Insensible’ evaporative water loss of mammals has been traditionally viewed as a passive process, but recent studies suggest that insensible water loss is under regulatory control, although the physiological role of this control is unclear. We test the hypothesis that regulation of insensible water loss has a thermoregulatory function by quantifying for the first time evaporative water loss control, along with metabolic rate and body temperature, of a heterothermic mammal during normothermia and torpor. Evaporative water loss was independent of ambient relative humidity at ambient temperatures of 20 and 30°C, but not at 25°C or during torpor at 20°C. Evaporative water loss per water vapour pressure deficit had a positive linear relationship with relative humidity at ambient temperatures of 20 and 30°C, but not at 25°C or during torpor at 20 or 25°C. These findings suggest that insensible water loss deviates from a physical model only during thermoregulation, providing support for the hypothesis that regulation of insensible evaporative water loss has a thermoregulatory role.


1981 ◽  
Vol 54 (2) ◽  
pp. 195-202 ◽  
Author(s):  
James R. Spotila ◽  
Christina J. Weinheimer ◽  
Charles V. Paganelli

1986 ◽  
Vol 59 (1) ◽  
pp. 1-9 ◽  
Author(s):  
David S. Hinds ◽  
Richard E. MacMillen

Sign in / Sign up

Export Citation Format

Share Document