Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue

Author(s):  
Yoko Takahashi ◽  
Takashi Ide ◽  
Hiroyuki Fujita
2004 ◽  
Vol 18 (9) ◽  
pp. 2302-2311 ◽  
Author(s):  
Michael A. Nolan ◽  
Maria A. Sikorski ◽  
G. Stanley McKnight

Abstract Mice lacking the RIIβ regulatory subunit of protein kinase A exhibit a 50% reduction in white adipose tissue stores compared with wild-type littermates and are resistant to diet-induced obesity. RIIβ−/− mice also have an increase in resting oxygen consumption along with a 4-fold increase in the brown adipose-specific mitochondrial uncoupling protein 1 (UCP1). In this study, we examined the basis for UCP1 induction and tested the hypothesis that the induced levels of UCP1 in RIIβ null mice are essential for the lean phenotype. The induction of UCP1 occurred at the protein but not the mRNA level and correlated with an increase in mitochondria in brown adipose tissue. Mice lacking both RIIβ and UCP1 (RIIβ−/−/Ucp1−/−) were created, and the key parameters of metabolism and body composition were studied. We discovered that RIIβ−/− mice exhibit nocturnal hyperactivity in addition to the increased oxygen consumption at rest. Disruption of UCP1 in RIIβ−/− mice reduced basal oxygen consumption but did not prevent the nocturnal hyperactivity. The double knockout animals also retained the lean phenotype of the RIIβ null mice, demonstrating that induction of UCP1 and increased resting oxygen consumption is not the cause of leanness in the RIIβ mutant mice.


1993 ◽  
Vol 291 (1) ◽  
pp. 109-113 ◽  
Author(s):  
R Burcelin ◽  
J Kande ◽  
D Ricquier ◽  
J Girard

We have studied the time course and relative effects of hypoinsulinaemia and hyperglycaemia on concentrations of uncoupling protein (UCP) and glucose transporter (GLUT4) and their mRNAs in brown adipose tissue (BAT) during the early phase of diabetes induced by streptozotocin. Two days after intravenous injection of streptozotocin, plasma insulin concentration was at its lowest and glycaemia was higher than 22 mmol/l. After 3 days, a 60% decrease in BAT UCP mRNA concentration and a 36% decrease in UCP was observed. Concomitantly, there was an 80% decrease in GLUT4 mRNA and a 44% decrease in GLUT4 levels. When hyperglycaemia was prevented by infusing phlorizin into diabetic rats, BAT UCP mRNA and protein levels were further decreased (respectively 90% and 60% lower than in control rats). In contrast, the marked decreases in GLUT4 mRNA and protein concentrations in BAT were similar in hyperglycaemic and normoglycaemic diabetic rats. Infusion of physiological amounts of insulin restored normoglycaemia in diabetic rats, and BAT UCP and GLUT4 mRNA and protein concentrations were maintained at the level of control rats. When insulin infusion was stopped, a 75% decrease in BAT UCP mRNA level and a 75% decrease in GLUT4 mRNA level were observed after 24 h, but UCP and GLUT4 concentrations did not decrease. This study shows that insulin plays an important role in the regulation of UCP and GLUT4 mRNA and protein concentrations in BAT. Hyperglycaemia partially prevents the rapid decrease in concentration of UCP and its mRNA observed in insulinopenic diabetes whereas it did not affect the decrease in GLUT4 mRNA and protein concentration. It is suggested that UCP is produced by a glucose-dependent gene.


2015 ◽  
Vol 112 (22) ◽  
pp. 6973-6978 ◽  
Author(s):  
Yang Lee ◽  
Chrissie Willers ◽  
Edmund R. S. Kunji ◽  
Paul G. Crichton

Uncoupling protein 1 (UCP1) catalyzes fatty acid-activated, purine nucleotide-sensitive proton leak across the mitochondrial inner membrane of brown adipose tissue to produce heat, and could help combat obesity and metabolic disease in humans. Studies over the last 30 years conclude that the protein is a dimer, binding one nucleotide molecule per two proteins, and unlike the related mitochondrial ADP/ATP carrier, does not bind cardiolipin. Here, we have developed novel methods to purify milligram amounts of UCP1 from native sources by using covalent chromatography that, unlike past methods, allows the protein to be prepared in defined conditions, free of excess detergent and lipid. Assessment of purified preparations by TLC reveal that UCP1 retains tightly bound cardiolipin, with a lipid phosphorus content equating to three molecules per protein, like the ADP/ATP carrier. Cardiolipin stabilizes UCP1, as demonstrated by reconstitution experiments and thermostability assays, indicating that the lipid has an integral role in the functioning of the protein, similar to other mitochondrial carriers. Furthermore, we find that UCP1 is not dimeric but monomeric, as indicated by size exclusion analysis, and has a ligand titration profile in isothermal calorimetric measurements that clearly shows that one nucleotide binds per monomer. These findings reveal the fundamental composition of UCP1, which is essential for understanding the mechanism of the protein. Our assessment of the properties of UCP1 indicate that it is not unique among mitochondrial carriers and so is likely to use a common exchange mechanism in its primary function in brown adipose tissue mitochondria.


2008 ◽  
Vol 19 (12) ◽  
pp. 840-847 ◽  
Author(s):  
Sachiko Nomura ◽  
Takashi Ichinose ◽  
Manabu Jinde ◽  
Yu Kawashima ◽  
Kaoru Tachiyashiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document