scholarly journals Basal forebrain cholinergic cell attachment and neurite outgrowth on organotypic slice cultures of hippocampal formation

Neuroscience ◽  
2002 ◽  
Vol 115 (3) ◽  
pp. 815-827 ◽  
Author(s):  
E.S Tsai ◽  
S.J Haraldson ◽  
J Baratta ◽  
A.D Lander ◽  
J Yu ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kana Okada ◽  
Kayo Nishizawa ◽  
Tomoko Kobayashi ◽  
Shogo Sakata ◽  
Kouichi Hashimoto ◽  
...  

AbstractSocial behaviour is a complex construct that is reported to include several components of social approach, interaction and recognition memory. Alzheimer’s disease (AD) is mainly characterized by progressive dementia and is accompanied by cognitive impairments, including a decline in social ability. The cholinergic system is a potential constituent for the neural mechanisms underlying social behaviour, and impaired social ability in AD may have a cholinergic basis. However, the involvement of cholinergic function in social behaviour has not yet been fully understood. Here, we performed a selective elimination of cholinergic cell groups in the basal forebrain in mice to examine the role of cholinergic function in social interaction and social recognition memory by using the three-chamber test. Elimination of cholinergic neurons in the medial septum (MS) and vertical diagonal band of Broca (vDB) caused impairment in social interaction, whereas ablating cholinergic neurons in the nucleus basalis magnocellularis (NBM) impaired social recognition memory. These impairments were restored by treatment with cholinesterase inhibitors, leading to cholinergic system activation. Our findings indicate distinct roles of MS/vDB and NBM cholinergic neurons in social interaction and social recognition memory, suggesting that cholinergic dysfunction may explain social ability deficits associated with AD symptoms.


1989 ◽  
Vol 135 (1) ◽  
pp. 172-181 ◽  
Author(s):  
Gregory C. Sephel ◽  
Ken-ichiro Tashiro ◽  
Makoto Sasaki ◽  
Susan Kandel ◽  
Yoshihiko Yamada ◽  
...  

1995 ◽  
Vol 130 (2) ◽  
pp. 473-484 ◽  
Author(s):  
U Nörenberg ◽  
M Hubert ◽  
T Brümmendorf ◽  
A Tárnok ◽  
F G Rathjen

The extracellular matrix glycoprotein tenascin-R (TN-R) is a multidomain protein implicated in neural cell adhesion. To analyze the structure-function relationship of the different domains of TN-R, several recombinant TN-R fragments were expressed in bacterial cells. Two distinct binding regions were localized on the TN-R polypeptide: a region binding the axon-associated immunoglobulin (Ig)-like F11 protein and a cell attachment site. The binding region of the glycosylphosphatidylinositol (GPI)-anchored F11 was allocated to the second and third fibronectin type III (FNIII)-like domain within TN-R. By using a mutant polypeptide of F11 containing only Ig-like domains, a direct interaction between the Ig-like domains of F11 and FNIII-like domains 2-3 of TN-R was demonstrated. The interaction of TN-R with F11 in in vitro cultures enhanced F11-mediated neurite outgrowth, suggesting that the combined action of F11 and TN-R might be of regulatory influence on axon extension. A cell attachment region was identified in the FNIII-like domain eight of TN-R by domain-specific antibodies and fusion constructs. This site is distinct from the F11 binding site within TN-R.


1991 ◽  
Vol 146 (3) ◽  
pp. 451-459 ◽  
Author(s):  
Ken-Ichiro Tashiro ◽  
Gregory C. Sephel ◽  
Dave Greatorex ◽  
Makoto Sasaki ◽  
Norio Shirashi ◽  
...  

1987 ◽  
Vol 104 (3) ◽  
pp. 623-634 ◽  
Author(s):  
D E Hall ◽  
K M Neugebauer ◽  
L F Reichardt

Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.


Sign in / Sign up

Export Citation Format

Share Document