Spatial and short-term temporal variations in runoff, soil aggregation and other soil properties along a mediterranean climatological gradient

CATENA ◽  
1998 ◽  
Vol 33 (2) ◽  
pp. 123-138 ◽  
Author(s):  
C Boix-Fayos ◽  
A Calvo-Cases ◽  
A.C Imeson ◽  
M.D Soriano-Soto ◽  
I.R Tiemessen
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1912
Author(s):  
Aleksander Yevtushenko ◽  
Katarzyna Topczewska ◽  
Michal Kuciej

An algorithm to determine the maximum temperature of brake systems during repetitive short-term (RST) braking mode has been proposed. For this purpose, the intermittent mode of braking was given in the form of a few cyclic stages consisting of subsequent braking and acceleration processes. Based on the Chichinadze’s hypothesis of temperature summation, the evolutions of the maximum temperature during each cycle were calculated as the sum of the mean temperature on the nominal contact surface of the friction pair elements and temperature attained on the real contact areas (flash temperature). In order to find the first component, the analytical solution to the one-dimensional thermal problem of friction for two semi-spaces taking into account frictional heat generation was adapted. To find the flash temperature, the solution to the problem for the semi-infinite rod sliding with variable velocity against a smooth surface was used. In both solutions, the temperature-dependent coefficient of friction and thermal sensitivity of materials were taken into account. Numerical calculations were carried out for disc and drum brake systems. The obtained temporal variations of sliding velocity, friction power and temperature were investigated on each stage of braking. It was found that the obtained results agree well with the corresponding data established by finite element and finite-difference methods.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


1996 ◽  
Vol 74 (6) ◽  
pp. 1110-1121 ◽  
Author(s):  
D. J. Tollit ◽  
P. M. Thompson

Predictions concerning the effect of seals upon prey stocks require an understanding of temporal variations in diet composition. This study examined the extent of between-year and seasonal variations in the diet of harbour seals (Phoca vitulina) from the Moray Firth, Scotland, between 1989 and 1992. Analyses of fish otoliths and cephalopod beaks collected from 1129 faecal samples were used to derive estimates of the contribution made by each of 35 prey species, based on the number and mass consumed. The key prey, by mass, were sand eels (Ammodytidae) (47%), lesser octopus (Eledone cirrhosa) (27%), whiting (Merlangius merlangus) (6%), flounder (Platichthys flesus) (5%), and cod (Gadus morhua) (4%). Between-year and seasonal fluctuations in the contributions of these species were observed. Sand eels contributed 86–20% in summer and 91–49% in winter. Lesser octopus contributed 0–62% in summer and < 5% in winter, whilst whiting and cod contributed 2–34% in winter and 1–4% in summer. In contrast to 1988, clupeids were unimportant in winter. Differences in diet composition appeared to reflect local changes in the availability of food, especially overwintering clupeids. Results indicate that dietary information obtained from short-term studies can be a poor indicator of subsequent diet composition and should be treated with caution when used to predict the effect of seals on prey populations.


Nauplius ◽  
2021 ◽  
Vol 29 ◽  
Author(s):  
Patricio De los Ríos-Escalante ◽  
Francisco Encina-Montoya ◽  
Eriko Carreño ◽  
Francisco Correa-Araneda ◽  
Carlos Esse

Sign in / Sign up

Export Citation Format

Share Document