Vitamin C attenuates the tissue damage by combined ischemia/reperfusion injury and cigarette smoke: intravital microscopic observations in the dorsal skinfold chamber of hamsters

2004 ◽  
Vol 200 (4) ◽  
pp. 291
Author(s):  
P. Bison ◽  
S.C. Schaefer ◽  
T.A. Sagban ◽  
J. Brunner ◽  
H.A. Lehr
2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Ramón Rodrigo ◽  
Matías Libuy ◽  
Felipe Feliú ◽  
Daniel Hasson

Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA) have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress). These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage.


1997 ◽  
Vol 273 (2) ◽  
pp. H989-H996 ◽  
Author(s):  
A. G. Harris ◽  
M. Steinbauer ◽  
R. Leiderer ◽  
K. Messmer

The purpose of this study was to examine the relationship of increased capillary network resistance due to leukocyte-capillary plugging and tissue edema through macromolecular leakage to tissue injury after ischemia-reperfusion (I/R). After a 3-h complete ischemia in the dorsal skinfold chamber of the awake Syrian hamster, the following parameters were measured: vessel diameter, macromolecular leakage, erythrocyte velocity, adherent leukocytes, rolling leukocytes, freely flowing leukocytes, functional capillary density (FCD), propidium iodide (PI)-positive cell nuclei, and increase in network flow resistance due to leukocyte-capillary plugging. These measurements were made under baseline conditions and after 0.5 and 2 h of reperfusion for I/R alone, I/R with phalloidin (PL) treatment (to block leakage), and I/R with both PL and cytochalasin D (CD) (to block both leakage and plugging). Neither treatment had an effect on the leukocyte adherence or rolling. PL treatment preserved the endothelial barrier, improved FCD, and reduced the amount of PI measured tissue damage. CD treatment eliminated the increase in network resistance due to leukocyte plugging but did not improve FCD or tissue damage. Thus, in this I/R model, macromolecular leakage plays a role in tissue injury, whereas leukocyte plugging does not appear to be an important mechanism.


PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e32260 ◽  
Author(s):  
Peter H. Lapchak ◽  
Antonis Ioannou ◽  
Lakshmi Kannan ◽  
Poonam Rani ◽  
Jurandir J. Dalle Lucca ◽  
...  

2020 ◽  
Author(s):  
Lin Fei ◽  
Xiao Jingyuan ◽  
Liang Fangte ◽  
Dai Huijun ◽  
Ye Liu ◽  
...  

Abstract Background Lung ischemia-reperfusion injury (LIRI) is a common and complex pathophysiological process that can lead to poor patient outcomes. Inflammasome-dependent macrophage pyroptosis contributes to organ damage caused by ischemia-reperfusion (I/R). Oxidative stress reaction and antioxidant enzymes also play an important role in LIRI. This experiment was conducted to investigate whether preconditioning with rHMGB1 could ameliorate LIRI and explore the mechanisms of its protective effect in a lung I/R mice model. Methods Adult male mice were anesthetized and the left hilus pulmonis was clamped for 60 min, followed by 120 min of reperfusion. rHMGB1 was performed by intraperitoneal injection at 2 h before anesthesia. Brusatol (Nrf-2 antagonist) was given intraperitoneally every other day for a total of five times before surgery. Measurements of pathohistological lung tissue damage, pulmonary wet/dry (W/D) ratios, inflammatory mediators were performed to assess the extent of lung injury after I/R. Alveolar macrophages (AMs) pyroptosis were evaluated by LDH release, caspase-1 expression in flow cytometry, GSDMD expression in immunofluorescent staining. Measurement of the products of oxidative Stress (ROS, MDA, 15-F2t-Isoprostane) and the antioxidant enzymes (SOD, GSH-PX, CAT) were performed. Results Preconditioning with rHMGB1 significantly ameliorated I/R-induced lung injury through measuring the morphology, wet/dry weight ratio, the expressions of IL-1β, IL-6, NF-κB, HMGB1 in lung tissue. rHMGB1 preconditioning remarkably alleviated AMs pyroptosis induced by lung I/R. rHMGB1 preconditioning significantly reduced oxidative stress and restored the activity of antioxidative enzymes. In addition, rHMGB1 preconditioning mediated the activity of Keap1/Nrf-2/HO-1 pathway in LIRI. Furthermore, inhibiting Keap1/Nrf-2/HO-1 pathway through brusatol administration could aggravate lung tissue damage and inflammatory response after lung I/R. Also, brusatol administration could suppresse the antioxidant and anti-pyroptosis effects of rHMGB1 preconditioning in LIRI. Conclusions rHMGB1 preconditioning protects against LIRI through suppressing AMs pyroptosis. The mechanism is partially explained by inhibiting oxidative stress and improving the activity of antioxidative enzymes via Keap1/Nrf-2/HO-1 pathway.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1421 ◽  
Author(s):  
Thomas S. Weiss ◽  
Madeleine Lupke ◽  
Rania Dayoub ◽  
Edward K. Geissler ◽  
Hans J. Schlitt ◽  
...  

Hepatic ischemia reperfusion injury (IRI) is a major complication in liver resection and transplantation. Here, we analyzed the impact of recombinant human augmenter of liver regeneration (rALR), an anti-oxidative and anti-apoptotic protein, on the deleterious process induced by ischemia reperfusion (IR). Application of rALR reduced tissue damage (necrosis), levels of lipid peroxidation (oxidative stress) and expression of anti-oxidative genes in a mouse IRI model. Damage associated molecule pattern (DAMP) and inflammatory cytokines such as HMGB1 and TNFα, were not affected by rALR. Furthermore, we evaluated infiltration of inflammatory cells into liver tissue after IRI and found no change in CD3 or γδTCR positive cells, or expression of IL17/IFNγ by γδTCR cells. The quantity of Gr-1 positive cells (neutrophils), and therefore, myeloperoxidase activity, was lower in rALR-treated mice. Moreover, we found under hypoxic conditions attenuated ROS levels after ALR treatment in RAW264.7 cells and in primary mouse hepatocytes. Application of rALR also led to reduced expression of chemo-attractants like CXCL1, CXCL2 and CCl2 in hepatocytes. In addition, ALR expression was increased in IR mouse livers after 3 h and in biopsies from human liver transplants with minimal signs of tissue damage. Therefore, ALR attenuates IRI through reduced neutrophil tissue infiltration mediated by lower expression of key hepatic chemokines and reduction of ROS generation.


Sign in / Sign up

Export Citation Format

Share Document