scholarly journals Up-down atmospheric neutrino flux asymmetry predictions for various neutrino oscillation scenarios

1998 ◽  
Vol 421 (1-4) ◽  
pp. 245-249 ◽  
Author(s):  
R. Foot ◽  
R.R. Volkas ◽  
O. Yasuda
2019 ◽  
Vol 209 ◽  
pp. 01011
Author(s):  
Giulio Settanta ◽  
Stefano Maria Mari ◽  
Cristina Martellini ◽  
Paolo Montini

Cosmic Ray and neutrino oscillation physics can be studied by using atmospheric neutrinos. JUNO (Jiangmen Underground Neutrino Observatory) is a large liquid scintillator detector with low energy detection threshold and excellent energy resolution. The detector performances allow the atmospheric neutrino oscillation measurements. In this work, a discrimination algorithm for different reaction channels of neutrino-nucleon interactions in the JUNO liquid scintillator, in the GeV/sub-GeV energy region, is presented. The atmospheric neutrino flux is taken as reference, considering $\mathop {{v_\mu }}\limits^{( - )} $ and $\mathop {{v_e}}\limits^{( - )} $. The different temporal behaviour of the classes of events have been exploited to build a timeprofile-based discrimination algorithm. The results show a good selection power for $\mathop {{v_e}}\limits^{( - )} $ CC events, while the $\mathop {{v_\mu }}\limits^{( - )} $ CC component suffers of an important contamination from NC events at low energy, which is under study. Preliminary results are presented.


Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 80
Author(s):  
Yusuke Koshio

In 1998, the Super-Kamiokande discovered neutrino oscillation using atmospheric neutrino anomalies. It was the first direct evidence of neutrino mass and the first phenomenon to be discovered beyond the standard model of particle physics. Recently, more precise measurements of neutrino oscillation parameters using atmospheric neutrinos have been achieved by several detectors, such as Super-Kamiokande, IceCube, and ANTARES. In addition, precise predictions and measurements of atmospheric neutrino flux have been performed. This paper presents the history, current status, and future prospects of the atmospheric neutrino observation.


1998 ◽  
Vol 13 (28) ◽  
pp. 2249-2264 ◽  
Author(s):  
D. V. AHLUWALIA

The L/E-flatness of the e-like events observed in the recent atmospheric-neutrino data from super-Kamiokande (SuperK) is interpreted to reflect a new symmetry of the neutrino-oscillation mixing matrix. From that we obtain an analytical set of constraints yielding a class of mixing matrices of the property to simultaneously fit both the SuperK and the LSND data. The resulting mass squared difference relevant for the LSND experiment is found as 0.3 eV2. The discussed symmetry, e.g., carries the nature that expectation values of masses for νμ and ντ are identical. These considerations are purely data dictated. A different framework is then applied to the solar neutrino problem. It is argued that a single sterile neutrino is an unlikely candidate to accommodate the data from the four solar neutrino experiments. A scenario is discussed which violates CPT symmetry, and favors the [Formula: see text] system to belong to the "self"–"anti-self" charge conjugate construct in the (1/2, 0)⊕(0,1/2) representation space, where the needed helicity flipping amplitudes are preferred, rather than the usual Dirac, or Majorana, constructs. In the presented framework the emerging SuperK data on solar neutrino flux is reconciled with the Homestake, GALLEX, and SAGE experiments. This happens because the former detects not only the solar νe but also, at a lower cross-section, the oscillated solar [Formula: see text]; while the latter are sensitive only to the oscillation-diminished solar νe flux. A direct observation of solar [Formula: see text] by SNO will confirm our scenario. Finally, we consider the possibility for flavor-dependent gravitational couplings of neutrinos as emerging out of the noncommutativity of the quantum operators associated with the measurements of energy and flavor.


2002 ◽  
Vol 17 (24) ◽  
pp. 3364-3377 ◽  
Author(s):  
◽  
C. K. JUNG

K2K is a long baseline neutrino oscillation experiment using a neutrino beam produced at the KEK 12 GeV PS, a near detector complex at KEK and a far detector (Super-Kamiokande) in Kamioka, Japan. The experiment was constructed and is being operated by an international consortium of institutions from Japan, Korea, and the US. The experiment started taking data in 1999 and has successfully taken data for about two years. K2K is the first long beseline neutrino oscillation experiment with a baseline of order hundreds of km and is the first accelerator based neutrino oscillation experiment that is sensitive to the Super-Kamiokande allowed region obtained from the atmospheric neutrino oscillation analysis. A total of 44 events have been observed in the far detector during the period of June 1999 to April 2001 corresponding to 3.85 × 1019 protons on target. The observation is consistent with the neutrino oscillation expectations based on the oscillation parameters derived from the atmospheric neutrinos, and the probability that this is a statistical fluctuation of non-oscillation expectation of [Formula: see text] is less than 3%.


2018 ◽  
Vol 46 ◽  
pp. 1860048 ◽  
Author(s):  
Dawn Williams

The IceCube Neutrino Observatory is a cubic kilometer detector located at the geographic South Pole. IceCube was designed to detect high-energy neutrinos from cosmic sources, and the DeepCore extension of IceCube enables the study of atmospheric neutrino interactions down to energies of a few GeV. IceCube has detected a diffuse flux of neutrinos in the energy range from 100 TeV to several PeV, the properties of which are inconsistent with an atmospheric origin, and has also published competitive limits on atmospheric neutrino oscillation parameters and other neutrino properties. This paper presents the latest results from IceCube and prospects for future upgrades and expansions of the detector.


2002 ◽  
Vol 17 (22) ◽  
pp. 1455-1464 ◽  
Author(s):  
ABHIJIT BANDYOPADHYAY ◽  
SANDHYA CHOUBEY ◽  
SRUBABATI GOSWAMI ◽  
D. P. ROY

We investigate how the anticipated neutral current rate from SNO will sharpen our understanding of the solar neutrino anomaly. Quantitative analyses are performed with representative values of this rate in the expected range of 0.8–1.2. This would provide a 5–10σ signal for νe transition into a state containing an active neutrino component. Assuming this state to be purely active one can estimate both the 8 B neutrino flux and the νe survival probability to a much higher precision than currently possible. Finally the measured value of the NC rate will have profound implications for the mass and mixing parameters of the solar neutrino oscillation solution.


Sign in / Sign up

Export Citation Format

Share Document