Prevention of chromosomal aberration in mouse bone marrow by indole-3-carbinol

1999 ◽  
Vol 106 (2-3) ◽  
pp. 137-141 ◽  
Author(s):  
R.C. Agrawal ◽  
S. Kumar
Author(s):  
Shailesh M. Kewatkar ◽  
Dipak V Bhusari ◽  
Madhav Chakolkar ◽  
Amit Joshi ◽  
Shirish P. Jain ◽  
...  

Background: In recent years, there has been a surge in interest in studying plant-derived materials and their impact on DNA. Herbal products include a number of natural substances that may help protect cells against mutagen-induced cell damage. Aim: The purpose of this research was to assess the genotoxic effects of Cassia Auriculata Linn flavonoids (CAF) and Cassia Auriculata Linn saponin (CAS) rich fractions on mouse bone marrow cells utilizing chromosomal aberration test and micronucleus assay. Methodology: The suppressive impact of CAF and CAS on 7, 12-dimethylbenz (α) anthracene (DMBA) and Croton oil induced skin tumor promotion in mice with topical administration twice weekly for 18 weeks is also investigated in this work. Three dosages of 100 and 200 mg/kg body weight were used. Single oral dosages of CAF and CAS Fraction at the three levels did not enhance the number of micronucleate polychromatic erythrocytes in the micronucleus experiment. Result: In mice bone marrow cells, a single oral treatment of CAF and CAS fraction revealed no significant alterations in mitotic indices or chromosomal aberration induction. The clastogenicity of CYP was considerably decreased by pretreatment with CAF and CAS fraction. As a result, it can be stated that CAF and CAS fraction had no genotoxic impact on mouse bone marrow cells. Conclusions: The portions of Cassia Auriculata have been shown to be non-genotoxic and non-clastogenic at the quantities utilized in this investigation. CAF and CAS Fraction might possibly be a promising skin tumor promotion reducing agent, according to this research.


2019 ◽  
Vol 19 (8) ◽  
pp. 633-644 ◽  
Author(s):  
Komal Kalani ◽  
Sarfaraz Alam ◽  
Vinita Chaturvedi ◽  
Shyam Singh ◽  
Feroz Khan ◽  
...  

Introduction: As a part of our drug discovery program for anti-tubercular agents, dihydroartemisinin (DHA-1) was screened against Mtb H37Rv, which showed moderate anti-tubercular activity (>25.0 µg/mL). These results prompted us to carry out the chemical transformation of DHA-1 into various derivatives and study their antitubercular potential. Materials and Methods: DHA-1 was semi-synthetically converted into four new acyl derivatives (DHA-1A – DHA-1D) and in-vitro evaluated for their anti-tubercular potential against Mycobacterium tuberculosis H37Rv virulent strain. The derivatives, DHA-1C (12-O-(4-nitro) benzoyl; MIC 12.5 µg/mL) and DHA-1D (12-O-chloro acetyl; MIC 3.12µg/mL) showed significant activity against the pathogen. Results: In silico studies of the most active derivative (DHA-1D) showed interaction with ARG448 inhibiting the mycobacterium enzymes. Additionally, it showed no cytotoxicity towards the Vero C1008 cells and Mouse bone marrow derived macrophages. Conclusion: DHA-1D killed 62% intracellular M. tuberculosis in Mouse bone marrow macrophage infection model. To the best of our knowledge, this is the first-ever report on the antitubercular potential of dihydroartemisinin and its derivatives. Since dihydroartemisinin is widely used as an antimalarial drug; these results may be of great help in anti-tubercular drug development from a very common, inexpensive, and non-toxic natural product.


Author(s):  
Basem M. Abdallah ◽  
Hany M. Khattab

: The isolation and culture of murine bone marrow-derived mesenchymal stromal stem cells (mBMSCs) have attracted great interest in terms of the pre-clinical applications of stem cells in tissue engineering and regenerative medicine. In addition, culturing mBMSCs is important for studying the molecular mechanisms of bone remodelling using relevant transgenic mice. Several factors have created challenges in the isolation and high-yield expansion of homogenous mBMSCs; these factors include low frequencies of bone marrow-derived mesenchymal stromal stem cells (BMSCs) in bone marrow, variation among inbred mouse strains, contamination with haematopoietic progenitor cells (HPCs), the replicative senescence phenotype and cellular heterogeneity. In this review, we provide an overview of nearly all protocols used for isolating and culturing mBMSCs with the aim of clarifying the most important guidelines for culturing highly purified mBMSC populations retaining in vitro and in vivo differentiation potential.


BIO-PROTOCOL ◽  
2014 ◽  
Vol 4 (4) ◽  
Author(s):  
Aurélie Tormo ◽  
Moutih Rafei ◽  
Jean-François Gauchat

Sign in / Sign up

Export Citation Format

Share Document