Self-consistent linear response approximation for quantum many-body systems

1998 ◽  
Vol 253 (1-4) ◽  
pp. 498-506 ◽  
Author(s):  
Tadashi Toyoda
2018 ◽  
Vol 181 ◽  
pp. 01009
Author(s):  
Jaroslava Hrtankova ◽  
Jiří Mareš

We report on our recent self-consistent calculations of K− nuclear quasi-bound states using K− optical potentials derived from chirally motivated meson-baryon coupled channels models [1, 2]. The K− single-nucleon potentials were supplemented by a phenomenological K− multi-nucleon interaction term introduced to achieve good fits to K− atom data. We demonstrate a substantial impact of the K− multi-nucleon absorption on the widths of K− nuclear states. If such states ever exist in nuclear many-body systems, their widths are excessively large to allow observation.


1969 ◽  
Vol 10 (9) ◽  
pp. 1804-1808
Author(s):  
M. Revzen ◽  
L. E. H. Trainor

Author(s):  
Xindong Wang ◽  
Hai-Ping Cheng

Using a separable many-body variational wavefunction, we formulate a self-consistent effective Hamiltonian theory for fermionic many-body system. The theory is applied to the two-dimensional (2D) Hubbard model as an example to demonstrate its capability and computational effectiveness. Most remarkably for the Hubbard model in 2D, a highly unconventional quadruple-fermion non-Cooper pair order parameter is discovered.


2010 ◽  
Vol 81 (19) ◽  
Author(s):  
Xianlong Gao ◽  
Jianmin Tao ◽  
G. Vignale ◽  
I. V. Tokatly

2021 ◽  
pp. 49-66
Author(s):  
Robert W. Batterman

This chapter begins the argument that the best way to understand the relations of relative autonomy between theories at different scales is through a mesoscale hydrodynamic description of many-body systems. It focuses on the evolution of conserved quantities of those systems in near, but out of equilibrium states. A relatively simple example is presented of a system of spins where the magnetization is the conserved quantity of interest. The chapter introduces the concepts of order parameters, of local quantities, and explains why we should be focused on the gradients of densities that inhabit the mesoscale between the scale of the continuum and that of the atomic. It introduces the importance of correlation functions and linear response.


Sign in / Sign up

Export Citation Format

Share Document