In vitro and in vivo evaluations of the efficacy and safety of skin permeation enhancers using flurbiprofen as a model drug

2003 ◽  
Vol 255 (1-2) ◽  
pp. 153-166 ◽  
Author(s):  
Jia-You Fang ◽  
Tsong-Long Hwang ◽  
Chia-Lang Fang ◽  
Hsien-Chih Chiu
Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 820
Author(s):  
Angela Abruzzo ◽  
Carola Parolin ◽  
Elisa Corazza ◽  
Barbara Giordani ◽  
Massimiliano Pio di Cagno ◽  
...  

One of the most widely used strategies to improve drug diffusion through the skin is the use of permeation enhancers. The aim of this work was to investigate the effect of two biosurfactants (BS), produced by Lactobacillus crispatus BC1 and Lactobacillus gasseri BC9, on the skin permeation profile of hydrocortisone (HC, model drug). HC aqueous solubility and in vitro diffusion studies through porcine skin were performed in the presence of BC1-BS and BC9-BS at concentrations below and above critical micellar concentrations (CMC). Moreover, skin hydration tests and differential scanning calorimetry (DSC) analysis were performed to further investigate BS interaction with the outermost layer of the skin. Both BS increased HC solubility, especially at concentrations above their CMC. At concentrations below the CMC, drug permeation through the skin was improved, as the result of a dual effect: a) the formation of a superficial lipophilic environment, as confirmed by the reduction in skin hydration and b) the interaction between BS and the stratum corneum (SC), as demonstrated by the DSC curves. From the obtained data, it appears that BC1-BS and BC9-BS could represent new promising green excipients for drug permeation enhancement through the skin.


Author(s):  
Y Madhusudan Rao ◽  
Gayatri P ◽  
Ajitha M ◽  
P. Pavan Kumar ◽  
Kiran kumar

Present investigation comprises the study of ex-vivo skin flux and in-vivo pharmacokinetics of Thiocolchicoside (THC) from transdermal films. The films were fabricated by solvent casting technique employing combination of hydrophilic and hydrophobic polymers. A flux of 18.08 µg/cm2h and 13.37µg/cm2h was achieved for optimized formulations containing 1, 8-cineole and oleic acid respectively as permeation enhancers. The observed flux values were higher when compared to passive control (8.66 µg/cm2h). Highest skin permeation was observed when 1,8-cineole was used as chemical permeation enhancer and it considerably (2-2.5 fold) improved the THC transport across the rat skin. In vivo studies were performed in rabbits and samples were analysed by LC-MS-MS. The mean area under the curve (AUC) values of transdermal film showed about 2.35 times statistically significant (p<0.05) improvement in bioavailability when compared with the oral administration of THC solution. The developed transdermal therapeutic systems using chemical permeation enhancers were suitable for drugs like THC in effective management of muscular pain.    


2021 ◽  
Vol 09 (06) ◽  
pp. E918-E924
Author(s):  
Tomonori Yano ◽  
Atsushi Ohata ◽  
Yuji Hiraki ◽  
Makoto Tanaka ◽  
Satoshi Shinozaki ◽  
...  

Abstract Backgrounds and study aims Gel immersion endoscopy is a novel technique to secure the visual field during endoscopy. The aim of this study was to develop a dedicated gel for this technique. Methods To identify appropriate viscoelasticity and electrical conductivity, various gels were examined. Based on these results, the dedicated gel “OPF-203” was developed. Efficacy and safety of OPF-203 were evaluated in a porcine model. Results  In vitro experiments showed that a viscosity of 230 to 1900 mPa·s, loss tangent (tanδ) ≤ 0.6, and hardness of 240 to 540 N/cm2 were suitable. Ex vivo experiments showed electrical conductivity ≤ 220 μS/cm is appropriate. In vivo experiments using gastrointestinal bleeding showed that OPF-203 provided clear visualization compared to water. After electrocoagulation of gastric mucosa in OPF-203, severe coagulative necrosis was not observed in the muscularis but limited to the mucosa. Conclusions OPF-203 is useful for gel immersion endoscopy.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 923
Author(s):  
Shadab Md ◽  
Nabil A. Alhakamy ◽  
Hibah M. Aldawsari ◽  
Mohammad Husain ◽  
Nazia Khan ◽  
...  

Plumbagin (PLM) is a phytochemical which has shown cytotoxicity against of cancer cells both in vitro and in vivo. However, the clinical application of PLM has been hindered due to poor aqueous solubility and low bioavailability. The aim of the present study was to develop, optimize and evaluate PLM-loaded glycerosome (GM) gel and compare with conventional liposome (CL) for therapeutic efficacy against skin cancer. The GM formulations were optimized by employing design expert software by 3-level 3-factor design. The prepared GMs were characterized in vitro for vesicle size, size distribution, zeta potential, vesicle deformability, drug release, skin permeation, retention, texture, antioxidant and cytotoxicity activities. The optimized formulation showed a vesicle size of 119.20 ± 15.67 nm with a polydispersity index (PDI) of 0.145 ± 0.02, the zeta potential of −27 ± 5.12 mV and entrapment efficiency of 76.42 ± 9.98%. The optimized PLM-loaded GM formulation was transformed into a pre-formed gel which was prepared using Carbopol 934 polymer. The drug diffusion fluxes of CL gel and GM-loaded gel were 23.31 ±6.0 and 79.43 ± 12.43 µg/ cm2/h, respectively. The result of texture analysis revealed the adequate hardness, cohesiveness, consistency, and viscosity of the developed GM-loaded gel compared to CL gel. The confocal images showed that glycerosomal gel has deeper skin layer penetration as compared to the control solution. GM-loaded gel treated rat skin showed significantly (p < 0.05) higher drug accumulation in the dermis, higher cytotoxicity and higher antioxidant activity as compared to CL gel and PLM suspension. Thus, findings revealed that novel GM-loaded gel could be potential carriers for therapeutic intervention in skin cancer.


2013 ◽  
Vol 31 (2) ◽  
pp. 394-400 ◽  
Author(s):  
D. Mohammed ◽  
P. J. Matts ◽  
J. Hadgraft ◽  
M. E. Lane
Keyword(s):  

2021 ◽  
Vol 18 ◽  
Author(s):  
Nayla Javed ◽  
Shakeel Ijaz ◽  
Naveed Akhtar ◽  
Haji Muhammad Shoaib Khan

Background: Arctostaphylos uva-ursi (AUU) being rich in polyphenols and arbutin is known to have promising biological activities and can be a potential candidate as a cosmaceutical. Ethosomes encourage the formation of lamellar-shaped vesicles with improved solubility and entrapment of many drugs including plant extracts. Objective: The objective of this work was to develop an optimized nanostructured ethosomal gel formulation loaded with AUU extract and evaluated for skin rejuvenation and depigmentation. Methods: AUU extract was tested for phenolic and flavonoid content, radical scavenging potential, reducing power activity, and in-vitro SPF (sun protection factor) estimation. AUU loaded 12 formulations were prepared and characterized by SEM (scanning electron microscopy), vesicular size, zeta potential, and entrapment efficiency (%EE). The optimized formulation was subjected to non-invasive in-vivo investigations after incorporating it into the gel system and ensuring its stability and skin permeation. Results: Ethosomal vesicles were spherical in shape and Zeta size, zeta potential, PDI (polydispersity index), % EE and in-vitro skin permeation of optimized formulation (F3) were found to be 114.7nm, -18.9mV, 0.492, 97.51±0.023%, and 79.88±0.013% respectively. AUU loaded ethosomal gel formulation was stable physicochemically and exhibited non-Newtonian behavior rheologically. Moreover, it significantly reduced skin erythema, melanin as well as sebum level and improved skin hydration and elasticity. Conclusion: A stable AUU based ethosomal gel formulation could be a better vehicle for phytoextracts than conventional formulations for cosmeceutical applications such as for skin rejuvenation and depigmentation etc.


2020 ◽  
Vol 17 (3) ◽  
pp. 851-863 ◽  
Author(s):  
Rui He ◽  
Qin Li ◽  
Wenqi Shen ◽  
Tao Wang ◽  
Huijuan Lu ◽  
...  

1996 ◽  
Vol 142 (1) ◽  
pp. 103-113 ◽  
Author(s):  
M.Fabrizio Saettone ◽  
Patrizia Chetoni ◽  
Riccardo Cerbai ◽  
Gabriela Mazzanti ◽  
Laura Braghiroli

Sign in / Sign up

Export Citation Format

Share Document