cold atmospheric plasma
Recently Published Documents





2022 ◽  
Vol 141 ◽  
pp. 106405
Pavol Ďurina ◽  
Tomáš Plecenik ◽  
Tomáš Roch ◽  
Veronika Medvecká ◽  
Martin Truchlý ◽  

2022 ◽  
Vol 11 ◽  
Christos A. Aggelopoulos ◽  
Anna-Maria Christodoulou ◽  
Myrsini Tachliabouri ◽  
Stauros Meropoulis ◽  
Maria-Elpida Christopoulou ◽  

Breast cancer exists in multiple subtypes some of which still lack a targeted and effective therapy. Cold atmospheric plasma (CAP) has been proposed as an emerging anti-cancer treatment modality. In this study, we investigated the effects of direct and indirect CAP treatment driven by the advantageous nanosecond pulsed discharge on breast cancer cells of different malignant phenotypes and estrogen receptor (ER) status, a major factor in the prognosis and therapeutic management of breast cancer. The main CAP reactive species in liquid (i.e. H2O2, NO2−/NO3−) and gas phase were determined as a function of plasma operational parameters (i.e. treatment time, pulse voltage and frequency), while pre-treatment with the ROS scavenger NAC revealed the impact of ROS in the treatment. CAP treatment induced intense phenotypic changes and apoptosis in both ER+ and ER- cells, which is associated with the mitochondrial pathway as evidenced by the increased Bax/Bcl-2 ratio and cleavage of PARP-1. Interestingly, CAP significantly reduced CD44 protein expression (a major cancer stem cell marker and matrix receptor), while differentially affected the expression of proteases and inflammatory mediators. Collectively, the findings of the present study suggest that CAP suppresses breast cancer cell growth and regulates several effectors of the tumor microenvironment and thus it could represent an efficient therapeutic approach for distinct breast cancer subtypes.

2022 ◽  
Jonas Hiller ◽  
Bernd Stratmann ◽  
Jürgen Timm ◽  
Tania‐Cristina Costea ◽  
Diethelm Tschoepe

2022 ◽  
Vol 12 (1) ◽  
Osvaldo Daniel Cortázar ◽  
Ana Megía-Macías ◽  
Sandra Moreno ◽  
Alejandro Brun ◽  
Eduardo Gómez-Casado

AbstractCold Atmospheric Plasma (CAP) and Plasma Activated Media (PAM) are effective against bacteria, fungi, cancer cells, and viruses because they can deliver Reactive Oxygen and Nitrogen Species (RONS) on a living tissue with negligible damage on health cells. The antiviral activity of CAP against SARS-CoV-2 is being investigated, however, the same but of PAM has not been explored despite its potential. In the present study, the capability of Plasma Activated Media (PAM) to inactivate SARS-CoV-2 and PR8 H1N1 influenza virus with negligible damage on healthy cells is demonstrated. PAM acted by both virus detaching and diminished replication. Furthermore, the treatment of A549 lung cells at different times with buffered PAM did not induce interleukin 8 expression, showing that PAM did not induce inflammation. These results open a new research field by using PAM to the development novel treatments for COVID-19, influenza, and other respiratory diseases.

2022 ◽  
Vol 12 (2) ◽  
pp. 590
Bogdan Caba ◽  
Ioannis Gardikiotis ◽  
Ionut Topala ◽  
Ilarion Mihaila ◽  
Cosmin Teodor Mihai ◽  

The evolution of reconstructive methods for defects of the human body cannot yet replace the use of flap surgery. Research is still preoccupied with the ideal techniques for offering the best chances of survival of the flaps. In our study, we investigated the effects of cold atmospheric plasma (CAP), N-nitro-L-arginine methyl ester (L-NAME), and platelet-rich plasma (PRP) injectable solutions on flap survival using an in vivo model. Twenty-four Wistar rats (four groups) had the McFarlane flap raised and CAP, L-NAME, and PRP substances tested through a single dose subcutaneous injection. The control group had only a saline solution injected. To the best of our knowledge, this is the first study that evaluated a CAP activated solution through injection on flaps. The flap survival rate was determined by clinical examination (photography documented), hematology, thermography, and anatomopathological tests. The image digital analysis performed on the flaps showed that the necrosis area (control—49.64%) was significantly lower for the groups with the three investigated solutions: CAP (14.47%), L-NAME (18.2%), and PRP (23.85%). Thermography exploration revealed less ischemia than the control group on the CAP, L-NAME, and PRP groups as well. Anatomopathological data noted the best degree of angiogenesis on the CAP group, with similar findings on the L-NAME and PRP treated flaps. The blood work did not indicate infection or a strong inflammatory process in any of the subjects. Overall, the study shows that the CAP activated solution has a similar (better) impact on the necrosis rate (compared with other solutions with known effects) when injected on the modified dorsal rat skin flap, and on top of that it can be obtained fast, in unlimited quantities, non-invasively, and through a standardized process.

2021 ◽  
Vol 23 (1) ◽  
pp. 420
Ming Yan ◽  
Philip Hartjen ◽  
Martin Gosau ◽  
Tobias Vollkommer ◽  
Audrey Laure Céline Grust ◽  

Cold plasma treatment increases the hydrophilicity of the surfaces of implants and may enhance their integration with the surrounding tissues. The implaPrep prototype device from Relyon Plasma generates cold atmospheric plasma via dielectric barrier discharge (DBD). In this study, titanium surfaces were treated with the implaPrep device for 20 s and assessed as a cell culture surface for fibroblasts. One day after seeding, significantly more cells were counted on the surfaces treated with cold plasma than on the untreated control titanium surface. Additionally, the viability assay revealed significantly higher viability on the treated surfaces. Morphological observation of the cells showed certain differences between the treated and untreated titanium surfaces. While conventional plasma devices require compressed gas, such as oxygen or argon, the implaPrep device uses atmospheric air as the gas source. It is, therefore, compact in size and simple to handle, and may provide a safe and convenient tool for treating the surfaces of dental implants, which may further improve the implantation outcome.

2021 ◽  
Vol 118 (51) ◽  
pp. e2107220118
Bo Guo ◽  
Anthony D. Pomicter ◽  
Francis Li ◽  
Sudhir Bhatt ◽  
Chen Chen ◽  

Therapy resistance is responsible for most cancer-related death and is mediated by the unique ability of cancer cells to leverage metabolic conditions, signaling molecules, redox status, and other pathways for their survival. Interestingly, many cancer survival pathways are susceptible to disturbances in cellular reactive oxygen species (ROS) and may therefore be disrupted by exogenous ROS. Here, we explore whether trident cold atmospheric plasma (Tri-CAP), a gas discharge with exceptionally low-level ROS, could inhibit multiple cancer survival pathways together in a murine cell line model of therapy-resistant chronic myeloid leukemia (CML). We show that Tri-CAP simultaneously disrupts three cancer survival pathways of redox deregulation, glycolysis, and proliferative AKT/mTOR/HIF-1α signaling in this cancer model. Significantly, Tri-CAP blockade induces a very high rate of apoptotic death in CML cell lines and in primary CD34+ hematopoietic stem and progenitor cells from CML patients, both harboring the therapy-resistant T315I mutation. In contrast, nonmalignant controls are minimally affected by Tri-CAP, suggesting it selectively targets resistant cancer cells. We further demonstrate that Tri-CAP elicits similar lethality in human melanoma, breast cancer, and CML cells with disparate, resistant mechanisms and that it both reduces tumor formation in two mouse models and improves survival of tumor-bearing mice. For use in patients, administration of Tri-CAP may be extracorporeal for hematopoietic stem cell transplantation therapy, transdermal, or through its activated solution for infusion therapy. Collectively, our results suggest that Tri-CAP represents a potent strategy for disrupting cancer survival pathways and overcoming therapy resistance in a variety of malignancies.

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4396
Kateřina Polášková ◽  
Miloš Klíma ◽  
Zdeňka Jeníková ◽  
Lucie Blahová ◽  
Lenka Zajíčková

Polypropylene is a typical representative of synthetic polymers that, for many applications including adhesive joints, requires an increase in wettability and chemical surface reactivity. Plasma processing offers efficient methods for such surface modifications. A particular disadvantage of the plasma jets can be the small plasma area. Here, we present a cold atmospheric plasma radio-frequency slit jet developed with a width of 150 mm applied to polypropylene plasma treatment in Ar, Ar/O2 and Ar/N2 We identified two main parameters influencing the tensile strength of adhesive joints mediated by epoxy adhesive DP 190, nitrogen content, and the amount of low molecular weight oxidized materials (LMWOMs). Nitrogen functional groups promoted adhesion between epoxy adhesive DP 190 and the PP by taking part in the curing process. LMWOMs formed a weak boundary layer, inhibiting adhesion by inducing a cohesive failure of the joint. A trade off between these two parameters determined the optimized conditions at which the strength of the adhesive joint increased 4.5 times. Higher adhesion strength was previously observed when using a translational plasma gliding arc plasma jet with higher plasma gas temperatures, resulting in better cross linking of polymer chains caused by local PP melting.

Sign in / Sign up

Export Citation Format

Share Document