scholarly journals Spectrum of the Dirac operator coupled to two-dimensional quantum gravity

2002 ◽  
Vol 630 (1-2) ◽  
pp. 339-358 ◽  
Author(s):  
L. Bogacz ◽  
Z. Burda ◽  
C. Petersen ◽  
B. Petersson
1991 ◽  
Vol 06 (15) ◽  
pp. 2743-2754 ◽  
Author(s):  
NORISUKE SAKAI ◽  
YOSHIAKI TANII

The radius dependence of partition functions is explicitly evaluated in the continuum field theory of a compactified boson, interacting with two-dimensional quantum gravity (noncritical string) on Riemann surfaces for the first few genera. The partition function for the torus is found to be a sum of terms proportional to R and 1/R. This is in agreement with the result of a discretized version (matrix models), but is quite different from the critical string. The supersymmetric case is also explicitly evaluated.


1990 ◽  
Vol 42 (4) ◽  
pp. 1144-1146 ◽  
Author(s):  
Chang Jun Ahn ◽  
Young Jai Park ◽  
Kee Yong Kim ◽  
Yongduk Kim ◽  
Won Tae Kim ◽  
...  

2017 ◽  
Vol 32 (31) ◽  
pp. 1750180
Author(s):  
Badis Ydri ◽  
Cherine Soudani ◽  
Ahlam Rouag

We present a new model of quantum gravity as a theory of random geometries given explicitly in terms of a multitrace matrix model. This is a generalization of the usual discretized random surfaces of two-dimensional quantum gravity which works away from two dimensions and captures a large class of spaces admitting a finite spectral triple. These multitrace matrix models sustain emergent geometry as well as growing dimensions and topology change.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Hoff da Silva ◽  
D. Beghetto ◽  
R. T. Cavalcanti ◽  
R. da Rocha

Abstract We investigate the effective Dirac equation, corrected by merging two scenarios that are expected to emerge towards the quantum gravity scale. Namely, the existence of a minimal length, implemented by the generalized uncertainty principle, and exotic spinors, associated with any non-trivial topology equipping the spacetime manifold. We show that the free fermionic dynamical equations, within the context of a minimal length, just allow for trivial solutions, a feature that is not shared by dynamical equations for exotic spinors. In fact, in this coalescing setup, the exoticity is shown to prevent the Dirac operator to be injective, allowing the existence of non-trivial solutions.


1989 ◽  
Vol 233 (1-2) ◽  
pp. 79-84 ◽  
Author(s):  
M.A. Awada ◽  
A.H. Chamseddine

Universe ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 83 ◽  
Author(s):  
Steven Carlip

If gravity is asymptotically safe, operators will exhibit anomalous scaling at the ultraviolet fixed point in a way that makes the theory effectively two-dimensional. A number of independent lines of evidence, based on different approaches to quantization, indicate a similar short-distance dimensional reduction. I will review the evidence for this behavior, emphasizing the physical question of what one means by “dimension” in a quantum spacetime, and will discuss possible mechanisms that could explain the universality of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document