scholarly journals FAMILIAL HYPERCHOLESTEROLEMIC SWINE MODEL PREDICTS ANTIRESTENOTIC EFFICACY OF CORONARY DRUG COATED BALLOONS: CONTINUED VALIDATION OF CLINICAL RELEVANCE OF THE LARGE ANIMAL MODEL OF ATHEROSCLEROSIS

2014 ◽  
Vol 63 (12) ◽  
pp. A1761
Author(s):  
Carlos A. Gongora ◽  
Armando Tellez ◽  
Yanping Cheng ◽  
Krzysztof Milewski ◽  
Masahiko Shibuya ◽  
...  
2021 ◽  
Author(s):  
Arvin Chireh ◽  
Mikael Sandell ◽  
Rikard Grankvist ◽  
Victoria Lövljung ◽  
Jonathan al-Saadi ◽  
...  

AbstractThe objective of the study was to investigate the safety profile of high-risk micro-endomyocardial biopsy (micro-EMB) compared to conventional EMB in a large animal model. Twenty pigs were subjected to a maximum of 30 consecutive biopsies, including sampling from the free ventricular wall, with either micro-EMB (n = 10) or conventional EMB (n = 10). There were no major complications in the micro-EMB group (0/10), compared to six major complications in the EMB group (6/10; p = 0.003). Survival analysis further highlighted these differences (p = 0.004). There were significantly higher volumes of pericardial effusion in the EMB group (p = 0.01). The study shows a safety advantage of micro-EMB compared to standard EMB in the experimental high-risk circumstances investigated in this animal study. These results indicate enhanced possibilities to collect samples from sensitive areas by using the micro-EMB technique instead of standard EMB.


2021 ◽  
pp. 112972982110467
Author(s):  
Diego Celdran-Bonafonte ◽  
Lihua H Wang ◽  
Aous Jarrouj ◽  
Begona Campos-Naciff ◽  
Jaroslav Janda ◽  
...  

Background: Although tunneled dialysis catheters (TDC) are far from ideal, they still represent the main form of vascular access for most patients beginning dialysis. Catheters are easy to place and allow patients instant access to dialysis, but regardless of these benefits, catheters are associated with a high incidence of significant complications like bloodstream infections, central venous stenosis, thrombosis, and dysfunction. In the present study, we aim to describe and characterize a swine model of catheter dysfunction and bloodstream infection, that recreates the clinical scenario, to help to serve as a platform to develop therapeutic innovations for this important clinical problem. Methods: Six Yorkshire cross pigs were used in this study. Non-coated commercial catheters were implanted in the external jugular recreating the main features of common clinical practice. Catheters were aseptically accessed twice a week for a mock dialysis procedure (flushing in and out) to assess for and identify catheter dysfunction. Animals were monitored daily for infections; once detected, blood samples were collected for bacterial culture and antibiograms. Study animals were euthanized when nonresponsive to treatment. Tissue samples were collected in a standardized fashion for macroscopic inspection and histological analysis. Results: The data analysis revealed an early onset of infection with a median time to infection of 9 days, 40% of the isolates were polymicrobial, and the average time to euthanasia was 20.16 ± 7.3 days. Median time to catheter dysfunction onset was 6 days post-implantation. Postmortem dissection revealed external fibrin sheath and internal thrombosis as the main causes of catheter dysfunction. There was also evidence of central venous stenosis with positive cells for αSMA, CD68, Ki67, Smoothelin, and Vimentin within the venous neointima. Conclusions: The described model represents a reliable and reproducible large animal model of catheter dysfunction and bloodstream infection, which recreates all the main complications of TDC’s and so could be used as a validated large animal model to develop new therapies for TDC related infection, thrombosis/dysfunction and central venous stenosis.


Analgesia ◽  
1995 ◽  
Vol 1 (4) ◽  
pp. 598-602 ◽  
Author(s):  
L.D. Napier ◽  
Z. Mateo ◽  
D.A. Yoshishige ◽  
B.A. Barron ◽  
J.L. Caffrey

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Premila D. Leiphrakpam ◽  
Hannah R. Weber ◽  
Andrea McCain ◽  
Roser Romaguera Matas ◽  
Ernesto Martinez Duarte ◽  
...  

Abstract Background Acute respiratory distress syndrome (ARDS) is multifactorial and can result from sepsis, trauma, or pneumonia, amongst other primary pathologies. It is one of the major causes of death in critically ill patients with a reported mortality rate up to 45%. The present study focuses on the development of a large animal model of smoke inhalation-induced ARDS in an effort to provide the scientific community with a reliable, reproducible large animal model of isolated toxic inhalation injury-induced ARDS. Methods Animals (n = 21) were exposed to smoke under general anesthesia for 1 to 2 h (median smoke exposure = 0.5 to 1 L of oak wood smoke) after the ultrasound-guided placement of carotid, pulmonary, and femoral artery catheters. Peripheral oxygen saturation (SpO2), vital signs, and ventilator parameters were monitored throughout the procedure. Chest x-ray, carotid, femoral and pulmonary artery blood samples were collected before, during, and after smoke exposure. Animals were euthanized and lung tissue collected for analysis 48 h after smoke inhalation. Results Animals developed ARDS 48 h after smoke inhalation as reflected by a decrease in SpO2 by approximately 31%, PaO2/FiO2 ratio by approximately 208 (50%), and development of bilateral, diffuse infiltrates on chest x-ray. Study animals also demonstrated a significant increase in IL-6 level, lung tissue injury score and wet/dry ratio, as well as changes in other arterial blood gas (ABG) parameters. Conclusions This study reports, for the first time, a novel large animal model of isolated smoke inhalation-induced ARDS without confounding variables such as cutaneous burn injury. Use of this unique model may be of benefit in studying the pathophysiology of inhalation injury or for development of novel therapeutics.


2021 ◽  
Vol 10 (Supplement_1) ◽  
Author(s):  
J Josiassen ◽  
OKL Helgestad ◽  
NLJ Udesen ◽  
A Banke ◽  
PH Frederiksen ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): The Danish Heart Foundation Unrestricted research grant from Abiomed Background No strong evidence exists regarding the treatment of cardiogenic shock (CS) caused by acute right ventricular (RV) failure which has mainly consisted of vasoactive drugs. There is expert agreement that treatment with the recently developed Impella RP is feasible, but no previous studies have compared vasoactive treatment strategies with the Impella RP in terms of cardiac unloading and end-organ perfusion. Hypothesis Treatment with the Impella RP device will be associated with lower RV myocardial workload (pressure-volume area) compared to vasoactive treatment strategies and can furthermore be achieved without compromising organ perfusion. Methods CS was induced by a stepwise injection of polyvinyl alcohol microspheres into the right coronary artery in twenty adult female Danish landrace pigs weighing 75-80 kg. After induction of CS, the pigs were allocated to one of the two interventions for 180 minutes: 1) vasoactive therapy comprised a continuous infusion of norepinephrine (0.1 µg/kg/min) for the first 30 minutes, supplemented by an infusion of milrinone (0.4 µg/kg/min) for the remaining 150 minutes or 2) immediate insertion of and treatment with the Impella RP.  The results are presented as median [Q1;Q3]. Results Treatment with the Impella RP was associated with a lower RV workload compared to the vasoactive group, while no difference was observed with regards to left ventricular workload among intervention groups, Figure 1. Renal venous oxygen saturation increased to a similar degree following both interventions compared to the state of CS. A trend towards a higher cerebral venous oxygen saturation was observed with norepinephrine compared to Impella RP (Impella RP 51 [47;61] % vs Norepinephrine 62 [57;71] % ; p = 0.07), which became significantly higher with the addition of milrinone (Impella RP 45 [32;63] % vs Norepinephrine +Milrinone 73 [66;81] %; p = 0.002). Conclusion In this large animal model of profound CS caused by predominantly RV failure the Impella RP unloaded the failing RV. The vasoactive treatment, however, caused a higher cerebral venous oxygen saturation, while both interventions increased renal venous oxygen saturation to a similar degree. Abstract Figure 1


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ling Li ◽  
Mohamad I. Itani ◽  
Kevan J. Salimian ◽  
Yue Li ◽  
Olaya Brewer Gutierrez ◽  
...  

AbstractGastrointestinal (GI) strictures are difficult to treat in a variety of disease processes. Currently, there are no Food and Drug Administration (FDA) approved drugs for fibrosis in the GI tract. One of the limitations to developing anti-fibrotic drugs has been the lack of a reproducible, relatively inexpensive, large animal model of fibrosis-driven luminal stricture. This study aimed to evaluate the feasibility of creating a model of luminal GI tract strictures. Argon plasma coagulation (APC) was applied circumferentially in porcine esophagi in vivo. Follow-up endoscopy (EGD) was performed at day 14 after the APC procedure. We noted high grade, benign esophageal strictures (n = 8). All 8 strictures resembled luminal GI fibrotic strictures in humans. These strictures were characterized, and then successfully dilated. A repeat EGD was performed at day 28 after the APC procedure and found evidence of recurrent, high grade, fibrotic, strictures at all 8 locations in all pigs. Pigs were sacrificed and gross and histologic analyses performed. Histologic examination showed extensive fibrosis, with significant collagen deposition in the lamina propria and submucosa, as well as extensive inflammatory infiltrates within the strictures. In conclusion, we report a porcine model of luminal GI fibrotic stricture that has the potential to assist with developing novel anti-fibrotic therapies as well as endoscopic techniques to address recurring fibrotic strictures in humans.


Sign in / Sign up

Export Citation Format

Share Document