Chronic Exercise Training Modulates Oxidative Stress in Patients With Chronic Heart Failure

1998 ◽  
Vol 31 (2) ◽  
pp. 509A
Author(s):  
J Niebauer
1998 ◽  
Vol 31 ◽  
pp. 509
Author(s):  
J. Niebauer ◽  
K.M. Webb-Peploe ◽  
K. Jourdan ◽  
J.A. Mitchell ◽  
G.J. Quinian ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Kourek ◽  
E Karatzanos ◽  
D Delis ◽  
M Alshamari ◽  
V Linardatou ◽  
...  

Abstract Background Chronic heart failure (CHF) remains a leading cause of morbidity and mortality and it is characterized by vascular endothelial dysfunction. During the last decades, endothelial progenitor cells (EPCs) are being used as an index of the endothelium restoration potential, therefore reflecting the vascular endothelial function. Exercise training has been shown to stimulate the mobilization of EPCs at rest in CHF patients. However, the effect of exercise training on the acute respond of EPCs after maximum exercise in CHF patients remains unknown. Purpose The purpose of the study was to assess the effect of a cardiac rehabilitation (CR) program on the acute respond of EPCs after maximum exercise in patients with CHF. Methods Forty-four consecutive patients (35 males) with stable CHF [mean±SD, Age (years): 56±10, BMI (kg/m2): 28.7±5.2, EF (%): 33±8, Peak VO2 (ml/kg/min): 18.4±4.4, Peak work rate (watts): 101±39] enrolled a 36-session CR program based on high-intensity interval exercise training. All patients underwent an initial symptom limited maximal cardiopulmonary exercise testing (CPET) on an ergometer before the CR program and a final maximal CPET after the CR program. Venous blood was drawn before and after each CPET. Five circulating endothelial populations were identified and quantified by flow cytometry; CD34+/CD45-/CD133+, CD34+/CD45-/CD133+/VEGFR2, CD34+/CD133+/VEGFR2, CD34+/CD45-/CD133- and CD34+/CD45-/CD133-/VEGFR2. EPCs values are expressed as cells/million enucleated cells in medians (25th-75th percentiles). Results The acute mobilization of EPCs after the final CPET was higher than after the initial CPET in 4 out of 5 circulating endothelial populations. Most specifically, difference of the acute mobilization of CD34+/CD45-/CD133+ cells [initial CPET: 25 (15–46) vs final CPET: 49 (26–71), p=0.002], CD34+/CD45-/CD133+/VEGFR2 cells [initial CPET: 3 (2–5) vs final CPET: 8 (5–12), p<0.001], CD34+/CD45-/CD133- cells [initial CPET: 129 (52–338) vs final CPET: 250 (129–518), p=0.03] and CD34+/CD45-/CD133-/VEGFR2 cells [initial CPET: 2 (1–4) vs final CPET: 6 (3–9), p<0.001] increased after the final CPET. The acute mobilization of CD34+/CD133+/VEGFR2 cells [initial CPET: 3 (−1–7) vs final CPET: 5 (0–15), p=0.441] did not differ between the 2 CPETS. Conclusion A 36-session cardiac rehabilitation program increases the acute respond of endothelial progenitor cells after maximum cardiopulmonary exercise training in patients with chronic heart failure, therefore indicating the beneficial effect of exercise training on the vascular endothelial function. Funding Acknowledgement Type of funding source: Public grant(s) – EU funding. Main funding source(s): Co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project


2015 ◽  
Vol 23 (4) ◽  
pp. 397-406 ◽  
Author(s):  
Adriana Iliesiu ◽  
Alexandru Campeanu ◽  
Daciana Marta ◽  
Irina Parvu ◽  
Gabriela Gheorghe

Abstract Background. Oxidative stress (OS) and inflammation are major mechanisms involved in the progression of chronic heart failure (CHF). Serum uric acid (sUA) is related to CHF severity and could represent a marker of xanthine-oxidase activation. The relationship between sUA, oxidative stress (OS) and inflammation markers was assessed in patients with moderate-severe CHF and reduced left ventricular (LV) ejection fraction (EF). Methods. In 57 patients with stable CHF, functional NYHA class III, with EF<40%, the LV function was assessed by N-terminal of the prohormone brain natriuretic peptide (NT-proBNP) levels and echocardiographically through the EF and E/e’ ratio, a marker of LV filling pressures. The relationship between LV function, sUA, malondialdehyde (MDA), myeloperoxidase (MPO), paraoxonase 1 (PON-1) as OS markers and high sensitivity C-reactive protein (hsCRP) and interleukin 6 (IL-6) as markers of systemic inflammation was evaluated. Results. The mean sUA level was 7.9 ± 2.2 mg/dl, and 61% of the CHF patients had hyperuricemia. CHF patients with elevated LV filling pressures (E/e’ ≥ 13) had higher sUA (8.6 ± 2.3 vs. 7.3 ± 1.4, p=0.08) and NT-proBNP levels (643±430 vs. 2531±709, p=0.003) and lower EF (29.8 ± 3.9 % vs. 36.3 ± 4.4 %, p=0.001). There was a significant correlation between sUA and IL-6 (r = 0.56, p<0.001), MDA (r= 0.49, p= 0.001), MPO (r=0.34, p=0.001) and PON-1 levels (r= −0.39, p= 0.003). Conclusion. In CHF, hyperuricemia is associated with disease severity. High sUA levels in CHF with normal renal function may reflect increased xanthine-oxidase activity linked with chronic inflammatory response.


2010 ◽  
Vol 105 (5) ◽  
pp. 665-676 ◽  
Author(s):  
Emeline M. Craenenbroeck ◽  
Vicky Y. Hoymans ◽  
Paul J. Beckers ◽  
Nadine M. Possemiers ◽  
Kurt Wuyts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document