An anisotropic ductile damage model based on irreversible thermodynamics

2003 ◽  
Vol 19 (10) ◽  
pp. 1679-1713 ◽  
Author(s):  
Michael Brünig
2017 ◽  
Vol 62 (4) ◽  
pp. 753-774
Author(s):  
M. Abdia ◽  
H. Molladavoodi ◽  
H. Salarirad

Abstract The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.


2012 ◽  
Vol 502 ◽  
pp. 451-457
Author(s):  
Jiang Bo Wang ◽  
Qing Ming Zhang ◽  
Cheng Liang Feng ◽  
Wei Bing Li ◽  
Heng Wang

By building up a debugging method about material parameters of concrete impact damage model based on DOE (Design of Experiments) analysis, this paper studies the influence of material parameters of concrete targets on the results of numerical simulation based on quantitative analysis, when the impact velocity is 300m/s and 850m/s respectively. It concludes that when the impact velocity of 300m/s, 5 parameters have considerable effect on the residual velocity of warhead, they are , , , and . Of all 5 parameters, , and can be obtained by calculation therefore it only needs to debug two parameters and according to experiments. Finally, when the impact velocity is 300m/s or so, debug combining the experiments to get a set of concrete impact damage model material parameters to make the results of simulation and experiment anastomosis well.


Sign in / Sign up

Export Citation Format

Share Document