Experimental critical care in ventilated rats: Effect of hypercapnia on arterial oxygen-carrying capacity

1999 ◽  
Vol 14 (4) ◽  
pp. 191-197 ◽  
Author(s):  
Dan Torbati ◽  
Bala R. Totapally ◽  
Maria T. Camacho ◽  
Jack Wolfsdorf
2013 ◽  
Vol 10 (3) ◽  
pp. 30-34 ◽  
Author(s):  
Ojashwi Nepal ◽  
BR Pokharel ◽  
K Khanal ◽  
SL Mallik ◽  
BK Kapoor ◽  
...  

Background The oxygen saturation of haemoglobin is reduced in high altitude-living organisms. Increase in the hematocrit is responsible for rise in the hemoglobin concentration so that the oxygen carrying capacity in the hypobaric hypoxic subject is elevated. Objectives To compare two different high altitude populations, in order to study the relationship between arterial oxygen saturation and hematocrit. Methods lIn the cross-sectional study of two populations residing at altitude of 2800 m and 3760 m are compared for the difference in hematocrit. The oxygen carrying capacity of arterial haemoglobin (SaO2) is determined by pulse oximetry. The sample is drawn from the natives of two small villages, Thini at Jomsom (2800 m) and Jharkot (3760 m) in Mustang district of Nepal. The natives at 2800 m are termed as lower high altitude population and local residents at 3760 m are said to be higher altitude population in this study. The sample blood was drawn by venipuncture and packed cell volume was determined by Wintrobe’s method. Results The hematocrit obtained from 3760 m altitude population and the lower high altitude population at altitude of 2800 m differ significantly with the p value < 0.0001and the SaO2 in both the population fails to show any difference with p value > 0.05. Deep breathing exercise in these populations however increased SaO2 significantly. Conclusion The higher altitude natives have greater arterial oxygen saturation than lower altitude population which is due to rise in red cell concentration. The slow deep breathing raises oxygen saturation irrespective of altitude. Kathmandu University Medical Journal | VOL.10 | NO. 3 | ISSUE 39 | JUL- SEP 2012 | Page 30-34 DOI: http://dx.doi.org/10.3126/kumj.v10i3.8014


Author(s):  
Mercedes J. Nagel ◽  
Caitlin P. Jarrard ◽  
Sophie Lalande

Intermittent hypoxia, defined as alternating bouts of breathing hypoxic and normoxic air, has the potential to improve oxygen-carrying capacity through an erythropoietin-mediated increase in hemoglobin mass. The purpose of this study was to determine the effect of a single session of intermittent hypoxia on erythropoietin levels and hemoglobin mass in young healthy individuals. Nineteen participants were randomly assigned to an intermittent hypoxia group (Hyp, n = 10) or an intermittent normoxia group (Norm, n = 9). Intermittent hypoxia consisted of five 4-min hypoxic cycles at a targeted arterial oxygen saturation of 90% interspersed with 4-min normoxic cycles. Erythropoietin levels were measured before and two hours following completion of the protocol. Hemoglobin mass was assessed the day before and seven days after exposure to intermittent hypoxia or normoxia. As expected, the intermittent hypoxia group had a lower arterial oxygen saturation than the intermittent normoxia group during the intervention (Hyp: 89 ± 1 vs. Norm: 99 ± 1%, p < 0.01). Erythropoietin levels did not significantly increase following exposure to intermittent hypoxia (Hyp: 8.2 ± 4.5 to 9.0 ± 4.8, Norm: 8.9 ± 1.7 to 11.1 ± 2.1 mU·mL−1, p = 0.15). Hemoglobin mass did not change following exposure to intermittent hypoxia. This single session of intermittent hypoxia was not sufficient to elicit a significant rise in erythropoietin levels or hemoglobin mass in young healthy individuals.


PEDIATRICS ◽  
1952 ◽  
Vol 10 (3) ◽  
pp. 293-305
Author(s):  
HARRY A. WAISMAN ◽  
JAMES A. BAIN ◽  
JULIUS B. RICHMOND ◽  
FRANKLIN A. MUNSEY

Congenital idiopathic methemoglobinemia in a 12 year old boy was corrected by the administration of either ascorbic acid or methylene blue, the latter being more efficient. The oxygen dissociation curve was normal but as would be expected the oxygen-carrying capacity of the blood was increased after methylene blue was given. Arterial oxygen saturation was determined by an oximeter to demonstrate the increased oxygen-carrying capacity after methylene blue. Para-amino propriophenone administration caused an increase in methemoglobin level but not to the maximum value for this patient. Sodium nitrite by mouth did give the maximum level. Enzyme studies revealed no difference in oxygen uptake of hexosediphosphate either with or without methylene blue in normal or methemoglobinemic cells in a medium which contained glucose. No "cytochrome-reductase like" activity was demonstrated in the methemoglobinemic cell. No definitive evidence exists to support the belief that reduced co-enzyme I reacts directly with methemoglobin in normal cells.


2011 ◽  
Vol 31 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Jillian Hamel

Cyanide causes intracellular hypoxia by reversibly binding to mitochondrial cytochrome oxidase a3. Signs and symptoms of cyanide poisoning usually occur less than 1 minute after inhalation and within a few minutes after ingestion. Early manifestations include anxiety, headache, giddiness, inability to focus the eyes, and mydriasis. As hypoxia progresses, progressively lower levels of consciousness, seizures, and coma can occur. Skin may look normal or slightly ashen, and arterial oxygen saturation may be normal. Early respiratory signs include transient rapid and deep respirations. As poisoning progresses, hemodynamic status may become unstable. The key treatment is early administration of 1 of the 2 antidotes currently available in the United States: the well-known cyanide antidote kit and hydroxocobalamin. Hydroxocobalamin detoxifies cyanide by binding with it to form the renally excreted, non-toxic cyanocobalamin. Because it binds with cyanide without forming methemoglobin, hydroxocobalamin can be used to treat patients without compromising the oxygen-carrying capacity of hemoglobin.


RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 59984-59987 ◽  
Author(s):  
Lijun Sun ◽  
Yannan Lu ◽  
Zhongqin Pan ◽  
Tingting Wu ◽  
Xiaojun Liu ◽  
...  

Hemoglobin-coated microspheres with one layer and five layers were fabricated by layer-by-layer assembly.


1967 ◽  
Vol 126 (6) ◽  
pp. 1127-1142 ◽  
Author(s):  
S. Frederick Rabiner ◽  
J. Raymond Helbert ◽  
Harry Lopas ◽  
Lila H. Friedman

The preparation of large quantities of a stable, stroma-free hemoglobin solution without coagulant activity is described. Following infusion of this solution into phlebotomized dogs, there is no methemoglobin formation, no adverse effects on vital signs, and no demonstrable activation of blood coagulation. The hemoglobin maintains its oxygen-carrying capacity and liberates oxygen into tissues. Acute and chronic effects on renal function following infusion of this preparation were also studied and no effect on clearance of urea, creatinine, or P.A.H. could be demonstrated. There was no change in urinary output and histological sections revealed no lesions attributable to hemoglobin toxicity. It is concluded that a stroma-free hemoglobin solution may have use as a plasma expander.


1990 ◽  
Vol 4 (6) ◽  
pp. 676-680
Author(s):  
Koichi Kobayashi ◽  
Masazumi Watanabe ◽  
Toshinori Hashizume ◽  
Masabumi Kawamura ◽  
Ryoichi Kato ◽  
...  

2000 ◽  
Vol 48 (4) ◽  
pp. 347 ◽  
Author(s):  
Cristina Davey ◽  
Alan Lill ◽  
John Baldwin

Parameters that influence blood oxygen carrying capacity (whole-blood haemoglobin content, haematocrit and red blood cell count) were measured in samples of 30 breeding, adult short-tailed shearwaters (Puffinus tenuirostris) on Phillip Island, Victoria at seven key stages of their reproductive cycle. The aim of the investigation was to determine whether variation in blood oxygen carrying capacity during the birds’ 7-month breeding cycle was correlated with variation in the energy demands they experienced or was an incidental by-product of other physiological changes. All the blood parameters varied significantly during breeding, but the pattern of variation was only partly correlated with the likely pattern of changing energy demand imposed on parents by their schedule of breeding activities. The main trend conceivably related to energy demand was that significantly higher values were recorded for these blood parameters during the nestling stage than earlier in the breeding cycle. This could have reflected the high costs of the very long foraging trips undertaken by parents feeding nestlings, but it could also have occurred in preparation for the long migration undertaken soon after breeding finished. It involved an ~10% increase in blood oxygen carrying capacity above the lowest mean value recorded during the breeding cycle and so other mechanisms must also be employed to achieve the increase in aerobic metabolism likely to be required at this stage. The lack of adjustment of blood oxygen carrying capacity to energy demand early in the breeding cycle suggests that either oxygen delivery was not a rate-limiting process for aerobic metabolism at that time or that delivery was enhanced through other mechanisms. At egg laying, females had a lower haematocrit and erythrocyte count than males, which could be attributable to either estrogenic suppression of erythropoiesis or an increase in osmotic pressure of the blood associated with yolk synthesis. Immature, non-breeding birds attending the colony were of similar mass to adults, but did not show the increase in the parameters determining blood oxygen carrying capacity that occurred in adults later in the breeding cycle. Factors other than changing energy requirements (dehydration, burrow hypoxia and differential responsiveness to capture stress) that might have influenced the pattern of variation in blood oxygen carrying capacity of adults during breeding are discussed.


2007 ◽  
Vol 55 (4) ◽  
pp. 249 ◽  
Author(s):  
Louise Mortimer ◽  
Alan Lill

Some birds facing energy ‘bottlenecks’ display elevated oxidative metabolism and oxygen delivery to tissues and could be particularly susceptible to chronic stress. We examined whether there was evidence for such trends in little penguins (Eudyptula minor) over the period from breeding to the post-moulting stage and particularly during the onshore moult-fast. Penguin parents contribute equally to incubation, brooding and brood provisioning. A few weeks post-breeding, adults undergo a protracted, terrestrial moult-fast and then make brief visits to the colony during the post-moulting stage. Provisioning nestling(s) and moulting could theoretically be particularly energetically and nutritionally demanding. We determined for adults whether mass, a body condition index and blood parameters influencing vascular oxygen carrying capacity (hematocrit, Hct; whole blood haemoglobin, Hb) and indicating chronic stress (leukocyte count, WBC; heterophil/lymphocyte ratio, H/L) varied from August to May in a manner reflecting likely variation in energy and nutrient demand. Female mass and body condition index decreased significantly between the incubation and guard stages, before returning to incubation levels between the guard and post-guard nestling stages. Both parameters declined to their lowest levels between the post-guard and moult stages, before increasing to levels comparable with those during nestling care between the moult and post-moult stages. Blood parameters in both sexes exhibited temporal variation similar to that in female mass and body condition index, declining to their lowest levels during moult and increasing after the moult to levels comparable with those during breeding. Results indicated that the period of most intense provisioning of nestlings was associated with a decrease in blood oxygen carrying capacity, but no pronounced change in chronic stress indicators. However, the penguin’s moult-fast involved a loss of female body condition and, in both sexes, a reduction in body mass, vascular oxygen carrying capacity and possibly specific immune competence. Thus, regulation of human disturbance in accessible little penguin colonies may be particularly important during moult.


Sign in / Sign up

Export Citation Format

Share Document