scholarly journals Effect of a Single Session of Intermittent Hypoxia on Erythropoietin and Oxygen-Carrying Capacity

Author(s):  
Mercedes J. Nagel ◽  
Caitlin P. Jarrard ◽  
Sophie Lalande

Intermittent hypoxia, defined as alternating bouts of breathing hypoxic and normoxic air, has the potential to improve oxygen-carrying capacity through an erythropoietin-mediated increase in hemoglobin mass. The purpose of this study was to determine the effect of a single session of intermittent hypoxia on erythropoietin levels and hemoglobin mass in young healthy individuals. Nineteen participants were randomly assigned to an intermittent hypoxia group (Hyp, n = 10) or an intermittent normoxia group (Norm, n = 9). Intermittent hypoxia consisted of five 4-min hypoxic cycles at a targeted arterial oxygen saturation of 90% interspersed with 4-min normoxic cycles. Erythropoietin levels were measured before and two hours following completion of the protocol. Hemoglobin mass was assessed the day before and seven days after exposure to intermittent hypoxia or normoxia. As expected, the intermittent hypoxia group had a lower arterial oxygen saturation than the intermittent normoxia group during the intervention (Hyp: 89 ± 1 vs. Norm: 99 ± 1%, p < 0.01). Erythropoietin levels did not significantly increase following exposure to intermittent hypoxia (Hyp: 8.2 ± 4.5 to 9.0 ± 4.8, Norm: 8.9 ± 1.7 to 11.1 ± 2.1 mU·mL−1, p = 0.15). Hemoglobin mass did not change following exposure to intermittent hypoxia. This single session of intermittent hypoxia was not sufficient to elicit a significant rise in erythropoietin levels or hemoglobin mass in young healthy individuals.

2013 ◽  
Vol 10 (3) ◽  
pp. 30-34 ◽  
Author(s):  
Ojashwi Nepal ◽  
BR Pokharel ◽  
K Khanal ◽  
SL Mallik ◽  
BK Kapoor ◽  
...  

Background The oxygen saturation of haemoglobin is reduced in high altitude-living organisms. Increase in the hematocrit is responsible for rise in the hemoglobin concentration so that the oxygen carrying capacity in the hypobaric hypoxic subject is elevated. Objectives To compare two different high altitude populations, in order to study the relationship between arterial oxygen saturation and hematocrit. Methods lIn the cross-sectional study of two populations residing at altitude of 2800 m and 3760 m are compared for the difference in hematocrit. The oxygen carrying capacity of arterial haemoglobin (SaO2) is determined by pulse oximetry. The sample is drawn from the natives of two small villages, Thini at Jomsom (2800 m) and Jharkot (3760 m) in Mustang district of Nepal. The natives at 2800 m are termed as lower high altitude population and local residents at 3760 m are said to be higher altitude population in this study. The sample blood was drawn by venipuncture and packed cell volume was determined by Wintrobe’s method. Results The hematocrit obtained from 3760 m altitude population and the lower high altitude population at altitude of 2800 m differ significantly with the p value < 0.0001and the SaO2 in both the population fails to show any difference with p value > 0.05. Deep breathing exercise in these populations however increased SaO2 significantly. Conclusion The higher altitude natives have greater arterial oxygen saturation than lower altitude population which is due to rise in red cell concentration. The slow deep breathing raises oxygen saturation irrespective of altitude. Kathmandu University Medical Journal | VOL.10 | NO. 3 | ISSUE 39 | JUL- SEP 2012 | Page 30-34 DOI: http://dx.doi.org/10.3126/kumj.v10i3.8014


2007 ◽  
Vol 103 (6) ◽  
pp. 1973-1978 ◽  
Author(s):  
Michael S. Koehle ◽  
A. William Sheel ◽  
William K. Milsom ◽  
Donald C. McKenzie

The purpose of this study was to compare chemoresponses following two different intermittent hypoxia (IH) protocols in humans. Ten men underwent two 7-day courses of poikilocapnic IH. The long-duration IH (LDIH) protocol consisted of daily 60-min exposures to normobaric 12% O2. The short-duration IH (SDIH) protocol comprised twelve 5-min bouts of 12% O2, separated by 5-min bouts of room air, daily. Isocapnic hypoxic ventilatory response (HVR) was measured daily during the protocol and 1 and 7 days following. Hypercapnic ventilatory response (HCVR) and CO2 threshold and sensitivity (by the modified Read rebreathing technique) were measured on days 1, 8, and 14. Following 7 days of IH, the mean HVR was significantly increased from 0.47 ± 0.07 and 0.47 ± 0.08 to 0.70 ± 0.06 and 0.79 ± 0.06 l·min−1·%SaO2−1 (LDIH and SDIH, respectively), where %SaO2 is percent arterial oxygen saturation. The increase in HVR reached a plateau after the third day. One week post-IH, HVR values were unchanged from baseline. HCVR increased from 3.0 ± 0.4 to 4.0 ± 0.5 l·min−1·mmHg−1. In both the hyperoxic and hypoxic modified Read rebreathing tests, the slope of the CO2/ventilation plot was unchanged by either intervention, but the CO2/ventilation curve shifted to the left following IH. There were no correlations between the changes in response to hypoxia and hypercapnia. There were no significant differences between the two IH protocols for any measures, indicating that comparable changes in chemoreflex control occur with either protocol. These results also suggest that the two methods of measuring CO2 response are not completely concordant and that the changes in CO2 control do not correlate with the increase in the HVR.


PEDIATRICS ◽  
1952 ◽  
Vol 10 (3) ◽  
pp. 293-305
Author(s):  
HARRY A. WAISMAN ◽  
JAMES A. BAIN ◽  
JULIUS B. RICHMOND ◽  
FRANKLIN A. MUNSEY

Congenital idiopathic methemoglobinemia in a 12 year old boy was corrected by the administration of either ascorbic acid or methylene blue, the latter being more efficient. The oxygen dissociation curve was normal but as would be expected the oxygen-carrying capacity of the blood was increased after methylene blue was given. Arterial oxygen saturation was determined by an oximeter to demonstrate the increased oxygen-carrying capacity after methylene blue. Para-amino propriophenone administration caused an increase in methemoglobin level but not to the maximum value for this patient. Sodium nitrite by mouth did give the maximum level. Enzyme studies revealed no difference in oxygen uptake of hexosediphosphate either with or without methylene blue in normal or methemoglobinemic cells in a medium which contained glucose. No "cytochrome-reductase like" activity was demonstrated in the methemoglobinemic cell. No definitive evidence exists to support the belief that reduced co-enzyme I reacts directly with methemoglobin in normal cells.


2007 ◽  
Vol 8 (4) ◽  
pp. 296-306 ◽  
Author(s):  
Edgar Cristancho ◽  
Orlando Reyes ◽  
Mauricio Serrato ◽  
María Mercedes Mora ◽  
Joel Alberto Rojas ◽  
...  

2011 ◽  
Vol 31 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Jillian Hamel

Cyanide causes intracellular hypoxia by reversibly binding to mitochondrial cytochrome oxidase a3. Signs and symptoms of cyanide poisoning usually occur less than 1 minute after inhalation and within a few minutes after ingestion. Early manifestations include anxiety, headache, giddiness, inability to focus the eyes, and mydriasis. As hypoxia progresses, progressively lower levels of consciousness, seizures, and coma can occur. Skin may look normal or slightly ashen, and arterial oxygen saturation may be normal. Early respiratory signs include transient rapid and deep respirations. As poisoning progresses, hemodynamic status may become unstable. The key treatment is early administration of 1 of the 2 antidotes currently available in the United States: the well-known cyanide antidote kit and hydroxocobalamin. Hydroxocobalamin detoxifies cyanide by binding with it to form the renally excreted, non-toxic cyanocobalamin. Because it binds with cyanide without forming methemoglobin, hydroxocobalamin can be used to treat patients without compromising the oxygen-carrying capacity of hemoglobin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinshu Katayama ◽  
Jun Shima ◽  
Ken Tonai ◽  
Kansuke Koyama ◽  
Shin Nunomiya

AbstractRecently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable.Trial registration UMIN000027671. Registered 7 June 2017.


Sign in / Sign up

Export Citation Format

Share Document