Primordial germ cell-derived embryonic germ cells of the mouse—in vitro model for cytotoxicity studies with chemical mutagens

1996 ◽  
Vol 10 (6) ◽  
pp. 755-763 ◽  
Author(s):  
U. Sehlmeyer ◽  
J. Rohwedel ◽  
A.M. Wobus
Reproduction ◽  
2003 ◽  
pp. 519-526 ◽  
Author(s):  
T Mayanagi ◽  
K Ito ◽  
J Takahashi

Primordial germ cells differentiate into germ cells and have the ability to reacquire totipotency. Mouse primordial germ cells are identified by alkaline phosphatase staining of the extraembryonic mesoderm, and they proliferate and migrate to reach the genital ridges. Mouse primordial germ cells have never been maintained in culture exclusively for longer than a week without differentiation or dedifferentiation. Moreover, primordial germ cells have not been proliferated with urogenital complexes in vitro, because gonad culture has never been successful. It was thought that primordial germ cells could proliferate in a culture of urogenital complex under modified medium conditions resembling those in vivo; however, organ culture of mouse gonad has been performed with fetal calf serum or equine serum, and those sera produce conditions different from those in vivo. Therefore, mouse urogenital complexes were cultured in media containing rodent sera. As a result, it was possible to proliferate primordial germ cell-like cells outside gonads, and these cells very closely resembled primordial germ cells. In addition, motile primordial germ cell-like cells could be obtained. The ability to maintain primordial germ cell-like cells in culture by this intra-species culture method is important in the study of gametogenesis. Furthermore, this method is useful as a source of stem cells such as embryonic germ cells.


2017 ◽  
Vol 45 (7) ◽  
pp. 748-754 ◽  
Author(s):  
Wenqi Lu ◽  
Eva Rettenmeier ◽  
Miles Paszek ◽  
Mei-Fei Yueh ◽  
Robert H. Tukey ◽  
...  

2016 ◽  
Vol 28 (2) ◽  
pp. 207
Author(s):  
J. Galiguis ◽  
C. E. Pope ◽  
C. Dumas ◽  
G. Wang ◽  
R. A. MacLean ◽  
...  

As precursors to germline stem cells and gametes, there are many potential applications for primordial germ cells (PGC). Primordial germ cell-like cells have been generated from mouse embryonic stem cells and induced pluripotent stem cells, which subsequently were used to produce functional spermatozoa, oocytes, and healthy offspring (Hayashi et al. 2012 Science 338(6109), 971–975). Applying this approach to generate sperm and oocytes of endangered species is an appealing prospect. Detection of molecular markers associated with PGC is essential to optimizing the process of PGC induction. In the current study, in vitro-derived domestic cat embryos were assessed at various developmental stages to characterise the expression of markers related to the specification process of cat PGC. In vivo-matured, IVF oocytes were cultured until Days 7, 9, and 12 post-insemination. Then, embryos were assessed by RT-qPCR to determine relative transcript abundance of the pluripotency markers NANOG, POU5F1, and SOX2; the epiblast marker DNMT3B; the primitive endoderm marker GATA4; the PGC marker PRDM14; and the germ cell marker VASA; RPS19 was used as the internal reference gene. To validate the qPCR results, fibroblasts served as the negative control cells, whereas spermatogonial stem cells (SSC) served as the positive control cells for GATA4, PRDM14, and VASA. Total mRNA were isolated using the Cells-to-cDNA™ II Kit (Ambion/Thermo Fisher Scientific, Waltham, MA, USA) from either pools of 2 to 6 embryos or ~25 000 fibroblasts/SSC. A minimum of 2 biological replicates for each sample type was analysed, with transcript abundance detected in 2 technical replicates by SYBR Green chemistry. Student’s t-tests were performed on the ΔCts for statistical analysis. PRDM14, specific to the germ cell lineage, was detected as early as Day 7, suggesting the presence of PGC precursor cells. Compared with their levels at Day 7, PRDM14 expression was 0.34-fold lower in SSC (P < 0.05), whereas expression of VASA and GATA4 were 1964-fold and 144-fold higher, respectively (P < 0.05). This seems to emphasise the relative importance of PRDM14 in pre-germ cell stages. In general, all genes analysed were up-regulated from Day 7 to Day 9. This up-regulation was statistically significant for SOX2 and GATA4 (P < 0.05). Relative to that at Day 9, all transcripts were relatively less abundant at Day 12 (P < 0.05 for NANOG, POU5F1, SOX2, DNMT3B, and PRDM14). The data suggest that PGC specification takes place near Day 9, with peak specification activity concluding by Day 12. Although much needs be explored about PGC specification in the cat before applying induction and in vitro germ cell production techniques, these findings represent the first step towards a new potential strategy for preserving endangered and threatened felids.


2003 ◽  
Vol 372 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Nathalie NAUD ◽  
Aminata TOURÉ ◽  
Jianfeng LIU ◽  
Charles PINEAU ◽  
Laurence MORIN ◽  
...  

The male-germ-cell Rac GTPase-activating protein gene (MgcRacGAP) was initially described as a human RhoGAP gene highly expressed in male germ cells at spermatocyte stage, but exhibits significant levels of expression in most cell types. In somatic cells, MgcRacGAP protein was found to both concentrate in the midzone/midbody and be required for cytokinesis. As a RhoGAP, MgcRacGAP has been proposed to down-regulate RhoA, which is localized to the cleavage furrow and midbody during cytokinesis. Due to embryonic lethality in MgcRacGAP-null mutant mice and to the lack of an in vitro model of spermatogenesis, nothing is known regarding the role and mode of action of MgcRacGAP in male germ cells. We have analysed the expression, subcellular localization and molecular interactions of MgcRacGAP in male germ cells. Whereas MgcRacGAP was found only in spermatocytes and early spermatids, the widespread RhoGTPases RhoA, Rac1 and Cdc42 (which are, to various extents, in vitro substrates for MgcRacGAP activity) were, surprisingly, not detected at these stages. In contrast, Rnd2, a Rho family GTPase-deficient G-protein was found to be co-expressed with MgcRacGAP in spermatocytes and spermatids. MgcRacGAP was detected in the midzone of meiotic cells, but also, unexpectedly, in the Golgi-derived pro-acrosomal vesicle, co-localizing with Rnd2. In addition, a stable Rnd2–MgcRacGAP molecular complex could be evidenced by glutathione S-transferase pull-down and co-immunoprecipitation experiments. We conclude that Rnd2 is a probable physiological partner of MgcRacGAP in male germ cells and we propose that MgcRacGAP, and, quite possibly, other RhoGAPs, may participate in signalling pathways involving Rnd family proteins.


2006 ◽  
Vol 18 (2) ◽  
pp. 212
Author(s):  
J. Y. Won ◽  
K. S. Ahn ◽  
S. Y. Heo ◽  
J. H. Kang ◽  
H. Shim

Pigs are considered the most likely source of organs for xenotransplantation due to their anatomical and physiological similarities to humans. Production of transgenic pigs including addition of human complement-regulatory protein genes and deletion of alpha-1,3-galactosyl transferase gene may overcome hyperacute rejection (HAR), the first and currently the most critical immunological hurdle in the development of xenogeneic organs for human transplantation. However, even after resolving HAR in pig-to-human xenotransplantation, a series of other transgenic pigs may be required to alleviate subsequent acute and chronic rejection and incompatibility of porcine proteins to human counterparts. The production of transgenic pigs is not only labor-intensive, time-consuming, and costly, but also the usefulness of such pigs in transplantation to humans is unpredictable. For these reasons, development of a reliable in vitro procedure to pre-evaluate effectiveness of the transgenic approach would be beneficial. This study was preformed to establish an in vitro model of xenotransplantation using porcine embryonic germ (EG) cells, undifferentiated stem cells derived from culture of primordial germ cells. Porcine EG cells were maintained in feeder-free state in DMEM containing 15% (v/v) fetal bovine serum and 1000 units/mL leukemia inhibitory factor. Human complement down-regulator hCD46 (also known as MCP, membrane cofactor protein) gene under the regulation of cytomegalovirus promoter was introduced into porcine EG cells. Transfected cells were selected by antibiotic treatment and confirmed by PCR. To test the resistance of hCD46-transgenic EG cells to human xenoreactive natural antibody and complement, EG cells were cultured for 1.5 days in DMEM containing 15% (v/v) normal human serum. The treatment with human serum did not affect the survival of hCD46-transgenic EG cells, whereas with the same treatment approximately one half of non-transfected EG cells failed to survive (P < 0.01). Transgenic EG cells presumably capable of overcoming HAR were used as nuclear donors for subsequent transfer of nuclei into enucleated oocytes. Among 110 reconstituted oocytes, 19 (17.3%) developed to the blastocyst stage. Analysis of individual nuclear transfer embryos by PCR indicated that 89.5% (17/19) of embryos contained transgene hCD46. The PCR-negative embryos might be due to an incomplete antibiotic selection of cells after transfection. Overall, the results of the present study demonstrate that the cell culture-based model of xenotransplantation may validate the usefulness of particular transgenic pigs prior to actual production. Further experiments on differentiation of transgenic EG cells into various cell types, cytolytic analysis of such cells to assess efficiency of xenotransplantation, and subsequent production and transfer of transgenic clone embryos to recipients may provide a useful new procedure to accelerate xenotransplantation research.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1214
Author(s):  
Swati Mishra ◽  
Jasin Taelman ◽  
Yolanda W. Chang ◽  
Annekatrien Boel ◽  
Petra De Sutter ◽  
...  

The second trimester of human development is marked by asynchronous gonadal development hampering the isolation of homogenous populations of early and late fetal germ cells (FGCs). We evaluated the feasibility of using surface markers TNAP, PDPN, EPCAM and ITGA6 to isolate FGCs as well as human primordial germ cell-like cells (hPGCLCs) derived from embryonic stem cells (hESCs) from both sexes by fluorescence-activated cell sorting (FACS). Our results suggest that a combination of TNAP and PDPN was sufficient to separate populations of premeiotic FGCs and hPGCLCs in both sexes. This combination of antibodies also proved efficient in separating ‘mitotic’ from ‘retinoic-acid responsive’ female FGCs. Furthermore, we report that the differentiation efficiency of TNAP+PDPN+ hPGCLCs from hESCs was sex-independent, but the ability to propagate differed considerably between the sexes. In contrast to male, female hPGCLCs retained their characteristics and exhibited robust colony-forming ability when cultured for five days in medium containing LIF, forskolin and FGF2. We conclude that marked sex differences exist in the isolation and propagation of human FGCs and hPGCLCs. Our study provides novel insights relevant for the optimization of in vitro gametogenesis in humans.


2021 ◽  
Author(s):  
Kyoung Jo ◽  
Seth Teague ◽  
Bohan Chen ◽  
Hina Aftab Khan ◽  
Emily Freeburne ◽  
...  

Human primordial germ cells (hPGCs) form around the time of implantation and are the precursors of eggs and sperm. Many aspects of hPGC specification remain poorly understood. Here we show that micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 give rise to hPGC-like cells (hPGCLC) and use these as a quantitatively reproducible and simple in vitro model to interrogate this important developmental event. We characterize micropatterned hPSCs up to 96h for the first time and show that hPGCLC populations are stable and continue to mature. By perturbing signaling during hPGCLC differentiation, we identify a previously unappreciated role for NODAL signaling and find that the relative timing and duration of BMP and NODAL signaling are critical parameters controlling the number of hPGCLCs. We formulate a mathematical model for a network of cross-repressive fates driven by NODAL and BMP signaling which predicts the measured fate patterns after signaling perturbations. Finally, we show that hPSC colony size dictates the efficiency of hPGCLC specification, which led us to dramatically improve the efficiency of hPGCLC differentiation over current protocols.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ellie Smart ◽  
Federica Lopes ◽  
Siobhan Rice ◽  
Boglarka Nagy ◽  
Richard A. Anderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document