Studies on structural and mechanical properties under isostatic compression with large-scale discrete element simulations

2014 ◽  
Vol 27 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Jianguo Liu ◽  
Qicheng Sun ◽  
Feng Jin ◽  
Qingkai Liu
2021 ◽  
Vol 249 ◽  
pp. 15001
Author(s):  
Daniel N. Wilke ◽  
Paul W. Cleary ◽  
Nicolin Govender

Industrial-scale discrete element simulations typically generate Gigabytes of data per time step, which implies that even opening a single file may require 5 - 15 minutes on conventional magnetic storage devices. Data science’s inherent multi-disciplinary nature makes the extraction of useful information challenging, often leading to undiscovered details or new insights. This study explores the potential of statistical learning to identify potential regions of interest for large scale discrete element simulations. We demonstrate that our in-house knowledge discovery and data mining system (KDS) can decompose large datasets into i) regions of potential interest to the analyst, ii) multiple decompositions that highlight different aspects of the data, iii) simplify interpretation of DEM generated data by focusing attention on the interpretation of automatically decomposed regions, and iv) streamline the analysis of raw DEM data by letting the analyst control the number of decomposition and the way the decompositions are performed. Multiple decompositions can be automated in parallel and compressed, enabling agile engagement with the analyst’s processed data. This study focuses on spatial and not temporal inferences.


Particuology ◽  
2010 ◽  
Vol 8 (2) ◽  
pp. 161-175 ◽  
Author(s):  
Harald Kruggel-Emden ◽  
Frantisek Stepanek ◽  
Ante Munjiza

Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3969
Author(s):  
Shirui Zhang ◽  
Shili Qiu ◽  
Pengfei Kou ◽  
Shaojun Li ◽  
Ping Li ◽  
...  

Granite exhibits obvious meso-geometric heterogeneity. To study the influence of grain size and preferred grain orientation on the damage evolution and mechanical properties of granite, as well as to reveal the inner link between grain size‚ preferred orientation, uniaxial tensile strength (UTS) and damage evolution, a series of Brazilian splitting tests were carried out based on the combined finite-discrete element method (FDEM), grain-based model (GBM) and inverse Monte Carlo (IMC) algorithm. The main conclusions are as follows: (1) Mineral grain significantly influences the crack propagation paths, and the GBM can capture the location of fracture section more accurately than the conventional model. (2) Shear cracks occur near the loading area, while tensile and tensile-shear mixed cracks occur far from the loading area. The applied stress must overcome the tensile strength of the grain interface contacts. (3) The UTS and the ratio of the number of intergrain tensile cracks to the number of intragrain tensile cracks are negatively related to the grain size. (4) With the increase of the preferred grain orientation, the UTS presents a “V-shaped” characteristic distribution. (5) During the whole process of splitting simulation, shear microcracks play the dominant role in energy release; particularly, they occur in later stage. This novel framework, which can reveal the control mechanism of brittle rock heterogeneity on continuous-discontinuous trans-scale fracture process and microscopic rock behaviour, provides an effective technology and numerical analysis method for characterizing rock meso-structure. Accordingly, the research results can provide a useful reference for the prediction of heterogeneous rock mechanical properties and the stability control of engineering rock masses.


2010 ◽  
Vol 64 (10-12) ◽  
pp. 1319-1335 ◽  
Author(s):  
Mikio Sakai ◽  
Yoshinori Yamada ◽  
Yusuke Shigeto ◽  
Kazuya Shibata ◽  
Vanessa M. Kawasaki ◽  
...  

Author(s):  
Chang Liu ◽  
Rui Cheng ◽  
Jiazhuang Guo ◽  
Ge Li ◽  
He Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document