scholarly journals Verification of an energy balance approach to estimate indoor wall heat fluxes using transfer functions and simplified solar heat gain calculations

2003 ◽  
Vol 37 (3-4) ◽  
pp. 235-243 ◽  
Author(s):  
M. Hernandez ◽  
M.A. Medina ◽  
D.L. Schruben
1992 ◽  
Vol 16 ◽  
pp. 73-78 ◽  
Author(s):  
Ma Hong ◽  
Liu Zongchao ◽  
Liu Yifeng

The energy-balance approach was used to calculate snowmelt at a site in the mid-mountain zone of the western Tien Shan mountains. During a 19-day snowmelt period, the results showed that net radiation and sensible heat fluxes accounted for 76.9 and 23.1% of the incoming energy, while snowmelt and evaporation consumed 97.1 and 2.9% of the energy, respectively. Snowmelt calculated from the energy balance compares favourably with measured values, indicating the suitability of the energy-balance approach for estimating the rate of snowmelt in the mountain environment of the western Tien Shan.


1992 ◽  
Vol 16 ◽  
pp. 73-78 ◽  
Author(s):  
Ma Hong ◽  
Liu Zongchao ◽  
Liu Yifeng

The energy-balance approach was used to calculate snowmelt at a site in the mid-mountain zone of the western Tien Shan mountains. During a 19-day snowmelt period, the results showed that net radiation and sensible heat fluxes accounted for 76.9 and 23.1% of the incoming energy, while snowmelt and evaporation consumed 97.1 and 2.9% of the energy, respectively. Snowmelt calculated from the energy balance compares favourably with measured values, indicating the suitability of the energy-balance approach for estimating the rate of snowmelt in the mountain environment of the western Tien Shan.


2020 ◽  
Vol 38 (3A) ◽  
pp. 402-411
Author(s):  
Mohannad R. Ghanim ◽  
Sabah T. Ahmed

Double skin ventilated roof is one of the important passive cooling techniques to reduce solar heat gain through roofs. In this research, an experimental study was performed to investigate the thermal behaviour of a double skin roof model. The model was made of two parallel galvanized steel plates. Galvanized steel has been used in the roof construction of industrial buildings and storehouses in Iraq. The effect of inclination angle (ϴ) from the horizontal and the spacing (S) between the plates was investigated at different radiation intensities. It is found that using a double skin roof arrangement with a sufficient air gap (S) can reduce the heat gain significantly. The higher the inclination angle (ϴ) the higher the ventilation rate, the lower the heat gain through the roof. In this study, increasing the air gap from 2 cm to 4 cm reduced the heat gain significantly but when the gap was further increased to 6 cm, the reduction in the heat flux was insignificant. A dimensionless correlation was also reduced between Nusselt number () and the single parameter  where L is the channel length. This correlation can be handily utilized for designing of engineering applications dealing with high temperature difference natural convection heat transfer.


Sign in / Sign up

Export Citation Format

Share Document