solar heat gain
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 28)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 881 (1) ◽  
pp. 012048
Author(s):  
Abdul Hakim Abdul Majid ◽  
Azhar Ghazali

Abstract One of the most efficient methods to optimize thermal performance in a building is the practical design of the façade. The double skin façade‘(DSF) is a crucial decision for handling the interaction between outdoor and indoor spaces. It also offers some spatial diversity in the design process. Recently, a lot of focus has been paid to it instead of the more traditionally glazed curtain wall. This is because of its potential to reduce energy effectively, achieve thermal comfort in the building, and save costs. The indoor spaces near to the glazed facades will become warm due to high incidence solar radiation on the East-West facades in Malaysia’s tropical environment. In the tropics, one of the solar heat gain reduction approaches is the use of double skin-facade (DSF). One of the fundamental components of the double-skin facade is the blinds. Blinds located in the cavity of the double-skinned facade and buffer the building from solar heat gain or perform the role of a pre-heater for ventilation air. In general, the temperature of the blinds is high, which is helpful in the cold period but problematic in the hot period. To minimize the cooling loads of the building, technological innovations for the shading system are considered. Plants can dissipate absorbed solar radiation into resistant and latent heat. Plants turn radiation into the latent heat. This paper aims to study the effectiveness of a double skin façade and explore improved innovative design for a double-skin façade design integrated with vertical green on research building to optimize thermal performance. This paper will collect data of the thermal performance of double skin façade, precedent study and run simulation analysis to achieve the aim of the paper.


2021 ◽  
Vol 9 (10) ◽  
pp. 1368-1378
Author(s):  
Hodo-Abalo Samah ◽  
◽  
Magolmeena Banna ◽  
Belkacem Zeghmati ◽  
◽  
...  

Planted roofs are passive cooling techniques that reduce the thermal load of buildings. In this paper, a Dynamic mathematical model based ontime average Navier-Stokes equationsfor a plantedroof in hothumidclimates has beendeveloped for evaluating the cooling potential.Transfer equations are solved using a finite difference scheme and Thomas algorithm. The model was applied for the simulation of a planted roof in Togolese climate conditions. Results showed that, evapotranspiration and Solar Heat gain Factor are functions of the Leaf Area Index LAI which is the most important parameter when considering the foliage material. For LAI equal to 6, latent heat peak value reaches 900 W.m-2while that of sensible heat is around 350 W.m-2. Solar heat gain factor can bereducedto 15% fortheplantedroofagainst 45% forbareroof. It is clearly proved that the foliage density and hence the vegetation canopy type selection greatly influence the thermal efficiency of the bioclimatic insulation screen. A larger Leaf Area Index reduces the solar flux penetration and increases evapotranspiration which is an important parameter when considering surrounding microclimate formation.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6331
Author(s):  
Doo-Yong Park ◽  
Hyun-Je Lee ◽  
Su-In Yun ◽  
Sang-Min Choi

In this study, seven of the most commonly applied covering materials in smart farms are selected as the representative samples for analysis, namely, glass, soft film (polyethylene, PE), soft film (polyolefin, PO), rigid plastic film (ethylene tetra fluoro ethylene, ETFE), rigid plastic sheet (poly methyl methacrylate, PMMA), rigid plastic sheet (polycarbonate, PC double layer), and woven film. For each covering material, visible light transmittance and reflectivity, solar radiation transmittance and reflectivity, thickness, solar heat gain coefficient, and the coefficient of heat transmission are measured according to the test methods in the Korean Industrial Standards (KS) to derive input data for the respective materials. In addition, using the optical and thermal input data as derived above, simulations are performed on the cooling load and daylight characteristics of smart farms to derive basic reference data for the selection of adequate covering materials for the design. Based on the analysis result of the daylight characteristics for each covering material, for a shading rate of 60%, the average values of indoor illuminance were 19,879 lux, 20,012 lux, 19,393 lux, 19,555 lux, 16,560 lux, 16,228 lux, and 11,173 lux for glass, PE film, PO film, ETFE, woven film, PMMA, and PC double layer, respectively, between 6 am and 8 pm, which correspond to the hours when daylight enters indoor spaces. Considering the target light intensity for strawberry growth at 10,000–40,000 lux, the above results confirm that all the sample covering materials had an indoor illuminance level above the lower limit range of the target light intensity. For the cooling load evaluation, the PC double layer had the lowest value of 482.8 W/m2, and PO film had the highest value of 633.8 W/m2. The difference between the cooling loads of the PC double layer and the PO film is 151 W/㎡, which amounts to 23.8%, thus indicating that the selected covering material significantly impacts the cooling load. The cooling load exhibited a pattern similar to that of the coefficient of heat transmission and solar heat gain coefficient, which are key influencing factors for most of the sample materials. However, for PMMA, the cooling load was low because it had a higher coefficient of heat transmission than other materials, but its solar heat gain coefficient was relatively low. Another possible reason for the difference is that the solar heat gain coefficient impacts the cooling load. When the cooling set temperature was controlled from Case 1-1 to Case 1-2, the cooling load decreased by 10.7% on average. In addition, when the cooling set temperature changed from Case 1-1 to Case 1-3, the cooling load decreased by 26.1% on average. For cooling set temperature control, maintaining the temperature around the lower temperature range of the optimal growth temperature of the plants increases the yield, but it also incurs increased cooling load and cost. In terms of cost only, while maintaining the cooling temperature for 24 h at 30 °C, which is the upper limit of the optimal growth temperature, would be advantageous, it will lead to a deterioration of the quality and reductions in yield. Therefore, as follow-up studies for further investigation of the findings of this research, there is the need for an evaluation of the yield and quality with respect to the range of cooling set temperatures. When the internal shading rate was increased to 40% (Case 2-2) with reference to Case 2-1, which was a greenhouse without the application of internal shading, the cooling load decreased by 27.4% on average. Furthermore, when the internal shading rate increased to 50% (Case 2-3) with reference to Case 2-1, the cooling load decreased by 29.3% on average. When the internal shading rate increased to 60% (Case 2-4), the cooling load decreased by 31.5% on average.


2021 ◽  
Vol 3 (1) ◽  
pp. 50-72
Author(s):  
Saim Memon ◽  
Robert Dawson ◽  
Zafar Said ◽  
Siamak Hoseinzadeh ◽  
Ali Sohani ◽  
...  

The inevitability to reduce CO2 emissions to avoid preventable climate change is widely being yelped. To minimise the impact of rapidly changing climate, this paper presents novel research findings and contributes to developing electrochromic argon gas-filled glazed smart windows retrofitted to the building with IoT based transparency control. In this, the comparative analyses of the daylighting, electrical lighting, solar heat gain, and space-heating load of the building using the dynamic thermal and electric lighting modelling methods based on real weather temperatures are presented. The daylighting analysis results implicate that the building with electrochromic argon gas-filled smart windows reduced 19% of daylight illuminance during summer months compared with the building retrofitted with double air-filled glazed windows daylight factor remains consistent. As such, the solar heat gains analysis results implicate at least 50 % annual solar heat gain reduction predicted in the building with electrochromic argon gas-filled smart windows in comparison to double air-filled windows. This leads to the conclusion of the space-heating energy analysis that implicates the highest contribution to the space heating demand is the solar heat gain caused by double air-filled glazed windows. The results confirm that the LED artificial electric lighting system requires fewer fittings and thus total power load compared to the fluorescent lighting system, throughout the year, to the building with electrochromic argon gas-filled glazed smart windows. The daylight controls are linked to the electrochromic argon gas-filled glazed smart windows, so they only operate when the glazing is tinted, or the daylight level drops below a set level; this will reduce the energy usage and also lower the space heating of the room.


Author(s):  
Tran Ngoc Chan ◽  
Pham Thi Hai Ha ◽  
Pham Van Luong ◽  
Nguyen Thi Khanh Phuong

The research discusses calibration of the method used to calculate solar heat transfer through shaded windows with continuous vertical slanted shading devices (below is abbreviated as "vertical slanted fins") with any slant angle Θ through a radiation reduction coefficient - Kbt. In order to evaluate the reduction of solar heat on window surface shaded by shading devices, a designated coefficient β of solar heat gain reduction through glazed windows should be established. It is the ratio of the transmitted amount of solar heat (including direct and diffuse radiation) through windows with shading device QK to those without solar shading device QKo. The study also introduces two in-house software programs. These programs help calculating solar heat gain and coefficient β for vertically slanted fins with any slant angle θ for 16 window orientations. The results of this study will be applied to the implementation of the Vietnamese national code QCVN 09:2017/BXD towards energy efficiency in buildings.


Solar Energy ◽  
2021 ◽  
Vol 213 ◽  
pp. 81-90
Author(s):  
Guoji Tian ◽  
Yuesheng Fan ◽  
Huan Wang ◽  
Huifan Zheng ◽  
Mingchen Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document