scholarly journals Neuronal Correlates of Motor Performance and Motor Learning in the Primary Motor Cortex of Monkeys Adapting to an External Force Field

Neuron ◽  
2001 ◽  
Vol 30 (2) ◽  
pp. 593-607 ◽  
Author(s):  
Chiang-Shan Ray Li ◽  
Camillo Padoa-Schioppa ◽  
Emilio Bizzi
2021 ◽  
Author(s):  
Eddy Albarran ◽  
Aram Raissi ◽  
Omar Jáidar ◽  
Carla J. Shatz ◽  
Jun B. Ding

SUMMARYDendritic spine dynamics of Layer 5 Pyramidal neurons (L5PNs) are thought to be physical substrates for motor learning and memory of motor skills and altered spine dynamics are frequently correlated with poor motor performance. Here we describe an exception to this rule by studying mice lacking Paired immunoglobulin receptor B (PirB−/−). Using chronic two-photon imaging of primary motor cortex (M1) of PirB−/−;Thy1-YFP-H mice, we found a significant increase in the survival of spines on apical dendritic tufts of L5PNs, as well as increased spine formation rates and spine density. Surprisingly and contrary to expectations, adult PirB−/− mice learn a skilled reaching task more rapidly compared to wild type (WT) littermate controls. Conditional excision of PirB from forebrain pyramidal neurons in adult mice replicated these results. Furthermore, chronic imaging of L5PN dendrites throughout the learning period revealed that the stabilization of learning-induced newly formed spines is significantly elevated in PirB−/− mice. The degree of survival of newly formed spines in M1 yielded the strongest correlation with task performance, suggesting that this increased spine stability is advantageous and can translate into enhanced acquisition and maintenance of motor skills. Notably, inhibiting PirB function acutely in M1 of adult WT mice throughout training increases the survival of spines formed during early training and enhances motor learning. These results suggest that increasing the stability of newly formed spines is sufficient to improve long-lasting learning and motor performance and demonstrate that there are limits on motor learning that can be lifted by manipulating PirB, even in adulthood.


2020 ◽  
Vol 8 (1) ◽  
pp. 453-460 ◽  
Author(s):  
Chao Shen ◽  
Tianle Cheng ◽  
Chunyan Liu ◽  
Lu Huang ◽  
Mengyang Cao ◽  
...  

An external force field-assisted electrochemical exfoliation method was adopted to produce few-layered bismuthene nanosheets (FBNs). These FBNs exhibited a high rate performance and ultra-long cycle life for KIBs anode.


2019 ◽  
Vol 696 ◽  
pp. 33-37 ◽  
Author(s):  
Ippei Nojima ◽  
Tatsunori Watanabe ◽  
Tomoya Gyoda ◽  
Hisato Sugata ◽  
Takashi Ikeda ◽  
...  

2009 ◽  
Vol 66 (12) ◽  
pp. 527-535
Author(s):  
Yoshinobu NOZUE ◽  
Takashi SAKURAI ◽  
Tatsuya KASAHARA ◽  
Noboru YAMAGUCHI

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Javier Flores Gutiérrez ◽  
Claudio De Felice ◽  
Giulia Natali ◽  
Silvia Leoncini ◽  
Cinzia Signorini ◽  
...  

Abstract Background Rett syndrome (RTT), an X-linked neurodevelopmental rare disease mainly caused by MECP2-gene mutations, is a prototypic intellectual disability disorder. Reversibility of RTT-like phenotypes in an adult mouse model lacking the Mecp2-gene has given hope of treating the disease at any age. However, adult RTT patients still urge for new treatments. Given the relationship between RTT and monoamine deficiency, we investigated mirtazapine (MTZ), a noradrenergic and specific-serotonergic antidepressant, as a potential treatment. Methods Adult heterozygous-Mecp2 (HET) female mice (6-months old) were treated for 30 days with 10 mg/kg MTZ and assessed for general health, motor skills, motor learning, and anxiety. Motor cortex, somatosensory cortex, and amygdala were analyzed for parvalbumin expression. Eighty RTT adult female patients harboring a pathogenic MECP2 mutation were randomly assigned to treatment to MTZ for insomnia and mood disorders (mean age = 23.1 ± 7.5 years, range = 16–47 years; mean MTZ-treatment duration = 1.64 ± 1.0 years, range = 0.08–5.0 years). Rett clinical severity scale (RCSS) and motor behavior assessment scale (MBAS) were retrospectively analyzed. Results In HET mice, MTZ preserved motor learning from deterioration and normalized parvalbumin levels in the primary motor cortex. Moreover, MTZ rescued the aberrant open-arm preference behavior observed in HET mice in the elevated plus-maze (EPM) and normalized parvalbumin expression in the barrel cortex. Since whisker clipping also abolished the EPM-related phenotype, we propose it is due to sensory hypersensitivity. In patients, MTZ slowed disease progression or induced significant improvements for 10/16 MBAS-items of the M1 social behavior area: 4/7 items of the M2 oro-facial/respiratory area and 8/14 items of the M3 motor/physical signs area. Conclusions This study provides the first evidence that long-term treatment of adult female heterozygous Mecp2tm1.1Bird mice and adult Rett patients with the antidepressant mirtazapine is well tolerated and that it protects from disease progression and improves motor, sensory, and behavioral symptoms.


Sign in / Sign up

Export Citation Format

Share Document