Intracellular Free Calcium Regulates the Onset of the Respiratory Burst of Human Neutrophils Activated by Phorbol Myristate Acetate

1999 ◽  
Vol 11 (5) ◽  
pp. 355-360 ◽  
Author(s):  
Tian-Hui Hu ◽  
Ling Bei ◽  
Zhong-Ming Qian ◽  
Xun Shen
1989 ◽  
Vol 264 (3) ◽  
pp. 879-884 ◽  
Author(s):  
B Dewald ◽  
M Thelen ◽  
M P Wymann ◽  
M Baggiolini

The protein kinase C inhibitor staurosporine influenced in different ways the functions of human neutrophils. Staurosporine prevented the enhanced protein phosphorylation in phorbol ester- and N-formylmethyionyl-leucylphenylalanine (fMLP)-stimulated cells, and was a powerful inhibitor of the respiratory burst induced by phorbol myristate acetate [IC50 (concentration causing 50% inhibition) 17 nM] and the chemotactic peptides fMLP and C5a (IC50 24 nM). It did not alter, however, the superoxide production by cell-free preparations of NADPH oxidase. Staurosporine had no effect on agonist-dependent changes in cytosolic free Ca2+ and exocytosis of specific and azurophil granules, and showed only a slight inhibition of the release of vitamin B12-binding protein induced by phorbol myristate acetate (decreased by 40% at 200 nM). On the other hand, staurosporine also exhibited neutrophil-activating properties: it induced the release of gelatinase (from secretory vesicles) and vitamin-B12-binding protein (from specific granules). These effects were protracted, concentration-dependent, insensitive to Ca2+ depletion, and strongly enhanced by cytochalasin B. Staurosporine, however, did not induce the release of beta-glucuronidase or elastase (from azurophil granules). Except for the sensitivity to cytochalasin B, these properties suggest a similarity between the exocytosis-inducing actions of staurosporine and PMA. The results obtained with staurosporine provide further evidence that different signal-transduction processes are involved in neutrophil activation, and suggest that protein phosphorylation is required for the induction of the respiratory burst, but not for exocytosis.


1988 ◽  
Vol 252 (3) ◽  
pp. 901-904 ◽  
Author(s):  
R C Garcia ◽  
A W Segal

Cytochrome b-245, the only clearly identified component of the microbicidal oxidase system of phagocytes, is a heterodimer consisting of a 23 kDa (alpha) and a 76-92 kDa (beta) subunit. This study was conducted to examine whether, in common with a number of proteins, the subunits of the cytochrome were phosphorylated upon activation of the oxidase. Both subunits were phosphorylated after activation of neutrophils or macrophages with phorbol myristate acetate or a phagocytic stimulus, although the time course of this process did not parallel that of the oxidase. Phosphorylation of these proteins was normal in cells from two patients with autosomal recessive chronic granulomatous disease, in whom phosphorylation of a 47 kDa protein is defective.


1982 ◽  
Vol 60 (11) ◽  
pp. 1359-1366 ◽  
Author(s):  
H. C. Birnboim

We have recently reported that phorbol myristate acetate (PMA) induces extensive DNA strand break damage in human peripheral blood leukocytes. The mechanism of action involves superoxide anion and hydrogen peroxide which are generated by phagocytes during the "respiratory burst." In this report, we describe the effect of various inhibitors and scavengers on PMA-induced DNA damage. Azide and cyanide greatly increased the level of damage; sulfhydryl compounds (glutathione, cysteine, and cysteamine) and ascorbate markedly decreased the level of damage. Hydroxyl radical scavengers such as dimethyl sulfoxide (DMSO) and glycerol also decreased the level of damage but apparently did so by inhibiting the respiratory burst. Diethyldithiocarbamate (DDC) increased the level of DNA damage at low concentrations (<1 mM), but decreased DNA damage at ≥1 mM. The results are consistent with a mechanism involving superoxide anion and hydrogen peroxide, but the precise reaction (free radical or enzymatic) responsible for DNA strand breakage has not been determined. The PMA-stimulated phagocyte is an interesting model system for looking at "active oxygen" mediated DNA damage and factors which influence it.


1993 ◽  
Vol 106 (2) ◽  
pp. 493-501
Author(s):  
A. Volz

The study analyses the distribution and quantitative expression of surface CD18 of neutrophils exposed to distinct stimuli that produce different types of continuous shape changes, including types that are associated with locomotion and others that are not. The chemotactic peptide N-formyl-L-norleucyl-L-leucyl-L-phenylalanine, colchicine and nocodazole were used to induce a polarized locomotor morphology, phorbol myristate acetate, 1,2-dioctanoylglycerol and 1-oleoyl-2-acetyl-glycerol to induce non-polar motile cells ruffling all over the surface and 2H2O to induce non-polar cells performing circus movements as have been previously described. Except for colchicine and nocodazole, these stimuli increased surface expression of CD18. Thus, stimulated shape changes are frequently, though not always, associated with increased surface expression of CD18. High concentrations (10(−7) to 10(−5) M) of phorbol myristate acetate but not of chemotactic peptide induced down-regulation of surface CD18. Cytochalasin D (10(−4) M) stimulated CD18 expression even though it inhibited shape changes. The surface distribution of CD18 determined by light microscopy was uniform in unstimulated cells or in various forms of stimulation except for cells treated with 10(−5) M cytochalasin D. Cytochalasin D (10(−5) M) produced CD18 accumulation at the pole opposite the F-actin cap. Experiments with colchicine, nocodazole, 2H2O and cytochalasin D suggest that microtubules as well as microfilaments modulate surface expression of CD18. The results suggest that protein kinase C and phosphatases play a role in regulating surface expression of CD18 in neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
1991 ◽  
Vol 78 (4) ◽  
pp. 1112-1116 ◽  
Author(s):  
BJ Rollins ◽  
A Walz ◽  
M Baggiolini

Abstract The JE gene was first described as a platelet-derived growth factor (PDGF)-inducible gene in mouse 3T3 cells. The human homologue of JE encodes a protein whose predicted amino acid sequence is identical to that of the monocyte chemoattractant MCP-1 (also called MCAF and SMC- CF), which belongs to a recently identified family of small secretory proteins with cytokine properties. We purified recombinant human MCP- 1/JE (hMCP-1/JE) produced in COS cells and demonstrated that it is chemotactic for human monocytes with a specific activity similar to natural MCP-1. In addition, pure recombinant hMCP-1/JE stimulates monocytes, inducing an increase in cytosolic free calcium and the respiratory burst, but is completely inactive on human neutrophils. These results help to define functionally a well-known growth factor- inducible gene and a member of a new family of cytokines.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 334-342 ◽  
Author(s):  
B Styrt ◽  
MS Klempner

Abstract Maintenance of an acidic intralysosomal compartment may be relevant to multiple aspects of neutrophil function. The effect of lysosomal alkalinization on the neutrophil respiratory burst was studied by measuring cytochrome c reduction in response to soluble stimuli in the presence of lysosomotropic weak bases. The weak bases chloroquine, ammonium chloride, methylamine, and clindamycin all raised the intralysosomal pH and inhibited neutrophil oxidative metabolism at concentrations ranging from 0.1 to 100 mmol/L. Inhibition was dose dependent for each base and correlated significantly with the degree of lysosomal alkalinization. Concentrations that did not alkalinize the lysosome did not inhibit the respiratory burst. Inhibition by weak bases was seen when oxidative metabolism was stimulated by phorbol myristate acetate, calcium ionophore A23187, formyl-methionyl-leucyl- phenylalanine, opsonized zymosan, or sodium fluoride. Increasing the stimulus concentration (from 5 ng/mL to 5 micrograms/mL phorbol myristate acetate and from 0.5 to 1 mumol/L A23187) diminished or abolished inhibition by weak bases. Washing the cells after incubation with bases and before stimulation substantially reversed the inhibition. None of the bases impaired detection of superoxide in a cell-free xanthine-xanthine oxidase assay. Other indexes of oxidative metabolism, including oxygen consumption and hydrogen peroxide release, were also inhibited by weak bases. Analysis of particulate NADPH oxidase activity from neutrophils stimulated in the presence of bases suggested that these cells assemble a subnormal amount of an enzyme complex with normal kinetic characteristics. Lysosomotropic weak bases alkalinized the neutrophil lysosome and produced inhibition of oxidative metabolism that was dose related, was not stimulus specific, and was largely reversed by washing the cells before stimulation. A possible explanation would be altered assembly of the enzyme complex involved in respiratory burst activation as a consequence of impaired granule/plasma membrane fusion in the presence of diminished transmembrane pH gradients.


Sign in / Sign up

Export Citation Format

Share Document