Electric field induced loss cone study by the charge exchange energy spectrum

1997 ◽  
Vol 34-35 ◽  
pp. 527-530
Author(s):  
H Zushi ◽  
Y Kurimoto ◽  
Heliotron E Group
2018 ◽  
Vol 33 (34) ◽  
pp. 1850202 ◽  
Author(s):  
N. Messai ◽  
B. Hamil ◽  
A. Hafdallah

In this paper, we study the (1 + 1)-dimensional Dirac equation in the presence of electric field and scalar linear potentials on (anti)-de Sitter background. Using the position representation, the energy spectrum and the corresponding wave functions are exactly obtained.


2009 ◽  
Vol 07 (supp01) ◽  
pp. 149-154
Author(s):  
MARIA ANASTASIA JIVULESCU ◽  
ROSANNA MIGLIORE ◽  
ANTONINO MESSINA

In this paper we investigate the possibility of controlling dynamical localization conditions for a charged particle confined in a 1D lattice biased with a dc-bichromatic field and long-range intersite interactions. We derive the quasi-energy spectrum of the system proving that the tunneling dynamics of the particle can be destroyed provided that the parameters of the external irradiating electric field are properly chosen.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950246
Author(s):  
Hassene Bada ◽  
Mekki Aouachria

In this paper, the propagator of a two-dimensional Dirac oscillator in the presence of a uniform electric field is derived by using the path integral technique. The fact that the globally named approach is used in this work redirects, beforehand, our search for the propagator of the Dirac equation to that of the propagator of its quadratic form. The internal motions relative to the spin are represented by two fermionic oscillators, which are described by Grassmannian variables, according to Schwinger’s fermionic model. Once the integration over the anticommuting variables (Grassmannian variables) is accomplished, the problem becomes the one of finding a non-relativistic propagator with only bosonic variables. The energy spectrum of the electron and the corresponding eigenspinors are also obtained in this work.


2012 ◽  
Vol 90 (7) ◽  
pp. 647-654 ◽  
Author(s):  
N. Kryukov ◽  
E. Oks

Charge exchange is one of the most important atomic processes in plasmas. Charge exchange and crossings of corresponding energy levels that enhance charge exchange are strongly connected with problems of energy losses and of diagnostics in high temperature plasmas. Charge exchange was also proposed as an effective mechanism for population inversion in the soft X-ray and vacuum ultraviolet ranges. One of the most fundamental theoretical domains for studying charge exchange is the problem of electron terms in the field of two stationary Coulomb centers (TCC) of charges Z and Z′ separated by a distance R. It presents an intriguing atomic physics: the terms can have crossings and quasi crossings. These intrinsic features of the TCC problem also manifest in different areas of physics, such as plasma spectroscopy: a quasi crossing of the TCC terms, by enhancing charge exchange, can result in an unusual structure (a dip) in the spectral line profile emitted by a Z-ion from a plasma consisting of both Z- and Z′-ions, as was shown theoretically and experimentally. Before the year 2000, the paradigm was that the preceding sophisticated features of the TCC problem and its flourishing applications were inherently quantum phenomena. In 2000, a purely classical description of the crossings of energy terms was presented. In the present paper we study the effect of an electric field (along the internuclear axis) on circular Rydberg states of the TCC system. We provide analytical results for strong fields, as well as numerical results for moderate fields. We show that the electric field has several effects. First, it leads to the appearance of an extra energy term: the fourth classical energy term — in addition to the three classical energy terms at zero field. Second, but more importantly, the electric field creates additional crossings of these energy terms. We show that some of these crossings significantly enhance charge exchange, while other crossings enhance the ionization of the Rydberg quasi molecule.


1986 ◽  
Vol 34 (5) ◽  
pp. 1900-1905
Author(s):  
P. N. Brusov ◽  
E. D. Gutlyanskii ◽  
V. N. Popov

Sign in / Sign up

Export Citation Format

Share Document