Identification of a seventh endo-pectate lyase of the phytopathogenic bacterium Erwinia chrysanthemi

Author(s):  
C. Pissavin ◽  
J. Robert-Baudouy ◽  
N. Hugouvieux-Cotte-Pattat
2001 ◽  
Vol 14 (1) ◽  
pp. 10-20 ◽  
Author(s):  
William Nasser ◽  
Michel Faelen ◽  
Nicole Hugouvieux-Cotte-Pattat ◽  
Sylvie Reverchon

The ability of the enterobacterium Erwinia chrysanthemi to induce pathogenesis in plant tissue is strongly related to the massive production of plant-cell-wall-degrading enzymes (pectinases, cellulases, and proteases). Additional factors, including flagellar proteins and exopolysaccharides (EPS), also are required for the efficient colonization of plants. Production of these virulence factors, particularly pectate lyases, the main virulence determinant, is tightly regulated by environmental conditions. The possible involvement of the protein H-NS in this process was investigated. The E. chrysanthemi hns gene was cloned by complementation of an Escherichia coli hns mutation. Its nucleotide sequence contains a 405-bp open reading frame that codes for a protein with 85% identity to the E. coli H-NS protein. An E. chrysanthemi hns mutant was constructed by reverse genetics. This mutant displays a reduced growth rate and motility but an increased EPS synthesis and sensitivity toward high osmolarity. Furthermore, pectate lyase production is dramatically reduced in this mutant. The hns mutation acts on at least two conditions affecting pectate lyase synthesis: induction of pectate lyase synthesis at low temperatures (25°C) is no longer observed in the hns mutant and induction of pectate lyase production occurs in the late stationary growth phase in the hns background, instead of in the late exponential growth phase as it does in the parental strain. Moreover, the E. chrysanthemi hns mutant displays reduced virulence on plants. Taken together, these data suggest that H-NS plays a crucial role in the expression of the virulence genes and in the pathogenicity of E. chrysanthemi.


2006 ◽  
Vol 72 (3) ◽  
pp. 1956-1965 ◽  
Author(s):  
Anne-Marie Grenier ◽  
Gabrielle Duport ◽  
Sylvie Pagès ◽  
Guy Condemine ◽  
Yvan Rahbé

ABSTRACT Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.


2002 ◽  
Vol 68 (4) ◽  
pp. 342-349
Author(s):  
Pongphen JITAREERAT ◽  
Hiroyuki MATSUMOTO ◽  
Masahiro UMEHARA ◽  
Shinji TSUYUMU

1999 ◽  
Vol 12 (10) ◽  
pp. 845-851 ◽  
Author(s):  
Sylwia Jafra ◽  
Izabela Figura ◽  
Nicole Hugouvieux-Cotte-Pattat ◽  
Ewa Lojkowska

Erwinia chrysanthemi mutants, containing transcriptional fusions of one of the minor pectate lyase genes (pelI, pelL, pelZ) with the reporter gene encoding β-glucuronidase activity, were studied for their ability to cause disease symptoms and to synthesize pectinases after inoculation of potato tubers. The strains affected in pelI and pelL genes displayed reduced virulence on potato tubers, demonstrating the important role of these isoenzymes in soft rot disease. Inactivation of the pelZ gene slightly influences the ability to macerate. Analysis of the bacterial population showed rapid multiplication of bacteria during infection. Similar kinetics of growth were observed for all mutants and for the wild-type strain. Comparison of the mutants and the wild-type strain showed that the pelI, pelL, and pelZ mutants synthesized reduced levels of Pels. The expression of pelZ is fivefold higher in planta than in bacterial cultures. In contrast, both pelI and pelL are highly (10-fold factor) induced in planta, which is characteristic of the plant-inducible pectate lyases.


1985 ◽  
Vol 161 (3) ◽  
pp. 913-920 ◽  
Author(s):  
A Collmer ◽  
C Schoedel ◽  
D L Roeder ◽  
J L Ried ◽  
J F Rissler

Sign in / Sign up

Export Citation Format

Share Document