scholarly journals Role of the Nucleoid-Associated Protein H-NS in the Synthesis of Virulence Factors in the Phytopathogenic Bacterium Erwinia chrysanthemi

2001 ◽  
Vol 14 (1) ◽  
pp. 10-20 ◽  
Author(s):  
William Nasser ◽  
Michel Faelen ◽  
Nicole Hugouvieux-Cotte-Pattat ◽  
Sylvie Reverchon

The ability of the enterobacterium Erwinia chrysanthemi to induce pathogenesis in plant tissue is strongly related to the massive production of plant-cell-wall-degrading enzymes (pectinases, cellulases, and proteases). Additional factors, including flagellar proteins and exopolysaccharides (EPS), also are required for the efficient colonization of plants. Production of these virulence factors, particularly pectate lyases, the main virulence determinant, is tightly regulated by environmental conditions. The possible involvement of the protein H-NS in this process was investigated. The E. chrysanthemi hns gene was cloned by complementation of an Escherichia coli hns mutation. Its nucleotide sequence contains a 405-bp open reading frame that codes for a protein with 85% identity to the E. coli H-NS protein. An E. chrysanthemi hns mutant was constructed by reverse genetics. This mutant displays a reduced growth rate and motility but an increased EPS synthesis and sensitivity toward high osmolarity. Furthermore, pectate lyase production is dramatically reduced in this mutant. The hns mutation acts on at least two conditions affecting pectate lyase synthesis: induction of pectate lyase synthesis at low temperatures (25°C) is no longer observed in the hns mutant and induction of pectate lyase production occurs in the late stationary growth phase in the hns background, instead of in the late exponential growth phase as it does in the parental strain. Moreover, the E. chrysanthemi hns mutant displays reduced virulence on plants. Taken together, these data suggest that H-NS plays a crucial role in the expression of the virulence genes and in the pathogenicity of E. chrysanthemi.

2013 ◽  
Vol 76 (8) ◽  
pp. 1350-1358 ◽  
Author(s):  
DONG HWAN LEE ◽  
JIN-BEOM KIM ◽  
MIHYUN KIM ◽  
EUNJUNG ROH ◽  
KYUSUK JUNG ◽  
...  

Spoilage causes vegetables to deteriorate and develop unpleasant characteristics. Approximately 30% of fresh vegetables are lost to spoilage, mainly due to colonization by bacteria. In the present study, a total of 44 bacterial isolates were obtained from a number of spoiled vegetables. The isolates were identified and classified into 20 different species of 14 genera based on fatty acid composition, biochemical tests, and 16S rDNA sequence analyses. Pseudomonas spp. were the species most frequently isolated from the spoiled vegetables. To evaluate the spoilage ability of each species, a variety of fresh vegetables were treated with each isolate and their degree of maceration was observed. In addition, the production of plant cell wall-degrading enzymes (PCWDEs), such as cellulase, xylanase, pectate lyase, and polygalacturonase, was compared among isolates to investigate their potential associations with spoilage. Strains that produce more PCWDEs cause spoilage on more diverse plants, and pectinase may be the most important enzyme among PCWDEs for vegetable spoilage. Most gram-negative spoilage bacteria produced acylated homoserine lactone, a quorum-sensing signal molecule, suggesting that it may be possible to use this compound effectively to prevent or slow down the spoilage of vegetables contaminated with diverse bacteria.


2017 ◽  
Author(s):  
Kevin Royet ◽  
Nicolas Parisot ◽  
Agnès Rodrigue ◽  
Erwan Gueguen ◽  
Guy Condemine

ABSTRACTSoft rot enterobacteria (DickeyaandPectobacterium) are major pathogens that cause diseases on plants of agricultural importance such as potato and ornamentals. Long term studies to identify virulence factors of these bacteria focused mostly on plant cell wall degrading enzymes secreted by the type II secretion system and the regulation of their expression. To identify new virulence factors we performed a Tn-seq genome-wide screen of a transposon mutant library during chicory infection followed by high-throughput sequencing. This allowed the detection of mutants with reduced but also increased fitness in the plant. Virulence factors identified differed from those previously known since diffusible ones (secreted enzymes, siderophores or metabolites) were not detected by this screen. In addition to genes encoding proteins of unknown function that could be new virulence factors, others could be assigned to known biological functions. The central role of the FlhDC regulatory cascade in the control of virulence was highlighted with the identification of new members of this pathway. Scarcity of the plant in certain amino acids and nucleic acids required presence of the corresponding biosynthetic genes in the bacteria. Their products could be targets for the development of antibacterial compounds. Among the genes required for full development in chicory we also identified six genes involved in the glycosylation of the flagellin FliC, glycosylation, which in other plant pathogenic bacteria contributes to virulence.Author summaryIdentification of virulence factors of plant pathogenic bacteria has relied on the test of individual mutants on plants, a time-consuming method. New methods like transcriptomic or proteomic can now be used but they only allow the identification of genes induced during the infection process and non-induced genes may be missed. Tn-seq is a very powerful method to identify genes required for bacterial growth in their host. We used for the first time this method in a plant pathogenic bacteria to identify genes required for the multiplication ofDickeya dadantiiin chicory. We identified about 100 genes with decreased or increased fitness in the plant. Most of them had no previously described role in bacterial virulence. We unveiled important metabolic genes and regulators of motility and virulence. We showed thatD. dadantiiflagellin is glycosylated and that this modification confers fitness to the bacteria during plant infection. Our work opens the way to the use of Tn-seq with bacterial phytopathogens. Assay by this method of large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lulu Liu ◽  
Virginie Gueguen-Chaignon ◽  
Isabelle R Gonçalves ◽  
Christine Rascle ◽  
Martine Rigault ◽  
...  

Abstract Few secreted proteins involved in plant infection common to necrotrophic bacteria, fungi and oomycetes have been identified except for plant cell wall-degrading enzymes. Here we study a family of iron-binding proteins that is present in Gram-negative and Gram-positive bacteria, fungi, oomycetes and some animals. Homolog proteins in the phytopathogenic bacterium Dickeya dadantii (IbpS) and the fungal necrotroph Botrytis cinerea (BcIbp) are involved in plant infection. IbpS is secreted, can bind iron and copper, and protects the bacteria against H2O2-induced death. Its 1.7 Å crystal structure reveals a classical Venus Fly trap fold that forms dimers in solution and in the crystal. We propose that secreted Ibp proteins binds exogenous metals and thus limit intracellular metal accumulation and ROS formation in the microorganisms.


Microbiology ◽  
2014 ◽  
Vol 160 (4) ◽  
pp. 766-777 ◽  
Author(s):  
Sébastien Bontemps-Gallo ◽  
Edwige Madec ◽  
Jean-Marie Lacroix

Dickeya dadantii is a phytopathogenic enterobacterium that causes soft rot disease in a wide range of plant species. Maceration, an apparent symptom of the disease, is the result of the synthesis and secretion of a set of plant cell wall-degrading enzymes (PCWDEs), but many additional factors are required for full virulence. Among these, osmoregulated periplasmic glucans (OPGs) and the PecS transcriptional regulator are essential virulence factors. Several cellular functions are controlled by both OPGs and PecS. Strains devoid of OPGs display a pleiotropic phenotype including total loss of virulence, loss of motility and severe reduction in the synthesis of PCWDEs. PecS is one of the major regulators of virulence in D. dadantii, acting mainly as a repressor of various cellular functions including virulence, motility and synthesis of PCWDEs. The present study shows that inactivation of the pecS gene restored virulence in a D. dadantii strain devoid of OPGs, indicating that PecS cannot be de-repressed in strains devoid of OPGs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiansong Chen ◽  
Zhiwen Li ◽  
Borong Lin ◽  
Jinling Liao ◽  
Kan Zhuo

Plant-parasitic nematodes secrete an array of cell-wall-degrading enzymes to overcome the physical barrier formed by the plant cell wall. Here, we describe a novel pectate lyase gene Mg-PEL1 from M. graminicola. Quantitative real-time PCR assay showed that the highest transcriptional expression level of Mg-PEL1 occurred in pre-parasitic second-stage juveniles, and it was still detected during the early parasitic stage. Using in situ hybridization, we showed that Mg-PEL1 was expressed exclusively within the subventral esophageal gland cells of M. graminicola. The yeast signal sequence trap system revealed that it possessed an N-terminal signal peptide with secretion function. Recombinant Mg-PEL1 exhibited hydrolytic activity toward polygalacturonic acid. Rice plants expressing RNA interference vectors targeting Mg-PEL1 showed an increased resistance to M. graminicola. In addition, using an Agrobacterium-mediated transient expression system and plant immune response assays, we demonstrated that the cell wall localization of Mg-PEL1 was required for the activation of plant defense responses, including programmed plant cell death, reactive oxygen species (ROS) accumulation and expression of defense-related genes. Taken together, our results indicated that Mg-PEL1 could enhance the pathogenicity of M. graminicola and induce plant immune responses during nematode invasion into plants or migration in plants. This provides a new insight into the function of pectate lyases in plants-nematodes interaction.


2010 ◽  
Vol 23 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Meriam Terta ◽  
Mohamed Kettani-Halabi ◽  
Khadija Ibenyassine ◽  
Daniel Tran ◽  
Patrice Meimoun ◽  
...  

Pectobacterium carotovorum are economically important plant pathogens that cause plant soft rot. These enterobacteria display high diversity world-wide. Their pathogenesis depends on production and secretion of virulence factors such as plant cell wall–degrading enzymes, type III effectors, a necrosis-inducing protein, and a secreted virulence factor from Xanthomonas spp., which are tightly regulated by quorum sensing. Pectobacterium carotovorum also present pathogen-associated molecular patterns that could participate in their pathogenicity. In this study, by using suspension cells of Arabidopsis thaliana, we correlate plant cell death and pectate lyase activities during coinfection with different P. carotovorum strains. When comparing soft rot symptoms induced on potato slices with pectate lyase activities and plant cell death observed during coculture with Arabidopsis thaliana cells, the order of strain virulence was found to be the same. Therefore, Arabidopsis thaliana cells could be an alternative tool to evaluate rapidly and efficiently the virulence of different P. carotovorum strains.


2008 ◽  
Vol 190 (13) ◽  
pp. 4610-4623 ◽  
Author(s):  
Yaya Cui ◽  
Asita Chatterjee ◽  
Hailian Yang ◽  
Arun K. Chatterjee

ABSTRACT Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC− mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (HarpinEcc) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC+ plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC− mutant are responsible for the inhibition of rsmB RNA production, a condition conducive to the accumulation of free RsmA. Indeed, studies with an RsmA− FlhDC− double mutant and multiple copies of rsmB + DNA establish that the negative effect of FlhDC deficiency is exerted via RsmA. The FlhDC-mediated regulation of fliA has no bearing on exoprotein production in E. carotovora subsp. carotovora. Our observations for the first time establish a regulatory connection between FlhDC, HexA, GacA, and rsmB RNA in the context of the exoprotein production and virulence of E. carotovora subsp. carotovora.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Filipe J. D. Vieira ◽  
Pol Nadal-Jimenez ◽  
Luis Teixeira ◽  
Karina B. Xavier

ABSTRACT Multihost bacteria have to rapidly adapt to drastic environmental changes, relying on a fine integration of multiple stimuli for an optimal genetic response. Erwinia carotovora spp. are phytopathogens that cause soft-rot disease. Strain Ecc15 in particular is a model for bacterial oral-route infection in Drosophila melanogaster as it harbors a unique gene, evf, that encodes the Erwinia virulence factor (Evf), which is a major determinant for infection of the D. melanogaster gut. However, the factors involved in the regulation of evf expression are poorly understood. We investigated whether evf could be controlled by quorum sensing as, in the Erwinia genus, quorum sensing regulates pectolytic enzymes, the major virulence factors needed to infect plants. Here, we show that transcription of evf is positively regulated by quorum sensing in Ecc15 via acyl-homoserine lactone (AHL) signal synthase ExpI and AHL receptors ExpR1 and ExpR2. We also show that the load of Ecc15 in the gut depends upon the quorum sensing-mediated regulation of evf. Furthermore, we demonstrate that larvae infected with Ecc15 suffer a developmental delay as a direct consequence of the regulation of evf via quorum sensing. Finally, we demonstrate that evf is coexpressed with plant cell wall-degrading enzymes (PCWDE) during plant infection in a quorum sensing-dependent manner. Overall, our results show that Ecc15 relies on quorum sensing to control production of both pectolytic enzymes and Evf. This regulation influences the interaction of Ecc15 with its two known hosts, indicating that quorum sensing signaling may impact bacterial dissemination via insect vectors that feed on rotting plants. IMPORTANCE Integration of genetic networks allows bacteria to rapidly adapt to changing environments. This is particularly important in bacteria that interact with multiple hosts. Erwinia carotovora is a plant pathogen that uses Drosophila melanogaster as a vector. To interact with these two hosts, Ecc15 uses different sets of virulence factors: plant cell wall-degrading enzymes to infect plants and the Erwinia virulence factor (evf) to infect Drosophila. Our work shows that, despite the virulence factors being specific for each host, both sets are coactivated by homoserine lactone quorum sensing and by the two-component GacS/A system in infected plants. This regulation is essential for Ecc15 loads in the gut of Drosophila and minimizes the developmental delay caused by the bacteria with respect to the insect vector. Our findings provide evidence that coactivation of the host-specific factors in the plant may function as a predictive mechanism to maximize the probability of transit of the bacteria between hosts.


1999 ◽  
Vol 181 (19) ◽  
pp. 5948-5957 ◽  
Author(s):  
Carine Rouanet ◽  
Kinya Nomura ◽  
Shinji Tsuyumu ◽  
William Nasser

ABSTRACT The main virulence factors of the phytopathogenic bacteriumErwinia chrysanthemi are pectinases which attack pectin, the major constituent of the plant cell wall. Of these enzymes, the alkaline isoenzyme named PelD in strain 3937 and PelE in strain EC16 has been described as being particularly important, based on virulence studies of plants. Expression of the pelD andpelE genes is tightly modulated by various regulators, including the KdgR repressor and the cyclic AMP-cyclic AMP receptor protein (CRP) activator complex. The use of a lacZ reporter gene allowed us to quantify the repression of E. chrysanthemi 3937 pelD expression exerted by PecS, another repressor of pectinase synthesis. In vitro DNA-protein interaction experiments, centered on the pelD andpelE wild-type or pelE mutated promoter regions, allowed us to define precisely the sequences involved in the binding of these three regulators and of RNA polymerase (RNAP). These studies revealed an unusual binding of the KdgR repressor and suggested the presence of a UP (upstream) element in the pelD andpelE genes. Investigation of the simultaneous binding of CRP, KdgR, PecS, and the RNAP to the regulatory region of thepelD and pelE genes showed that (i) CRP and RNAP bind cooperatively, (ii) PecS partially inhibits binding of the CRP activator and of the CRP-RNAP complex, and (iii) KdgR stabilizes the binding of PecS and prevents transcriptional initiation by RNAP. Taken together, our data suggest that PecS attenuates pelDand pelE expression rather than acting as a true repressor like KdgR. Overall, control of the pelD andpelE genes of E. chrysanthemi appears to be both complex and novel.


Sign in / Sign up

Export Citation Format

Share Document