Rigid-thermoviscoplastic finite element simulation of non-steady-state orthogonal cutting

2002 ◽  
Vol 130-131 ◽  
pp. 345-350 ◽  
Author(s):  
Dae-Cheol Ko ◽  
Sung-Lim Ko ◽  
Byung-Min Kim
2014 ◽  
Vol 611-612 ◽  
pp. 1210-1216 ◽  
Author(s):  
Farshid Jafarian ◽  
Mikel Imaz Ciaran ◽  
Pedro José Arrazola ◽  
Luigino Filice ◽  
Domenico Umbrello ◽  
...  

Inconel 718 superalloy is one of the difficult-to-machine materials which is employed widely in aerospace industries because of its superior properties such as heat-resistance, high melting temperature, and maintenance of strength and hardness at high temperatures. Material behavior of the Inconel 718 is an important challenge during finite element simulation of the machining process because of the mentioned properties. In this regard, various constants for Johnson–Cook’s constitutive equation have been reported in the literature. Owing to the fact that simulation of machining process is very sensitive to the material model, in this study the effect of different flow stresses were investigated on outputs of the orthogonal cutting process of Inconel 718 alloy. For each model, the predicted results of cutting forces, chip geometry and temperature were compared with experimental results of the previous work at the different feed rates. After comparing the results of the different models, the most suitable Johnson–Cook’s material model was indentified. Obtained results showed that the selected material model can be used reliably for machining simulation of Inconel 718 superalloy.


2012 ◽  
Vol 499 ◽  
pp. 208-212
Author(s):  
Ai Hua Gao ◽  
Fu Rong Wang ◽  
Jian Xin Zhang

The paper make the service life of relieving formed milling cutter as the optimization objective, proceed the simulation study on the mechanical degree of cutter, cutting data. The concrete method is that the orthogonal milling model is established to simulate the simulation milling process, some basic parameters which are obtained in the machining process are analyzed and discussed. The results indicate that the finite element simulation of the metal cutting processing can analyze quantitatively some physical properties, such as the cutting force, stress, strain and so on, the traditional way of qualitative analysis is changed. The state of machining is in favour of grasping in the theory, the theory and technology are provided to establish the proper processing technology strategy.


2012 ◽  
Vol 236-237 ◽  
pp. 536-542 ◽  
Author(s):  
Xiang Lei Duan ◽  
Shu Guang Zuo ◽  
Yong Li ◽  
Chen Fei Jiang ◽  
Xue Liang Guo

To analyze the steady-state temperature field, a three-factor orthogonal test was taken to study comprehensively how the load, speed and tire pressure can influence the tire temperature. The finite element simulation was carried out according to the uncoupled idea. Based on the single-factor analysis towards the speed factor, the actual convection coefficient of different boundaries was determined to calculate the steady-state temperature field at last. These analyses indicate that the tire temperature rise increase with the factor of load and speed, decrease with the increase of the initial tire pressure. The load has the biggest influence on the tire temperature rise, while the speed has the least. With the combination of steady-state temperature field and heat generation rate distribution, all these high-temperature regions can be explained clearly from the finite element perspective.


Sign in / Sign up

Export Citation Format

Share Document