The Finite Element Simulation of Milling Based on Orthogonal Cutting Model

2012 ◽  
Vol 499 ◽  
pp. 208-212
Author(s):  
Ai Hua Gao ◽  
Fu Rong Wang ◽  
Jian Xin Zhang

The paper make the service life of relieving formed milling cutter as the optimization objective, proceed the simulation study on the mechanical degree of cutter, cutting data. The concrete method is that the orthogonal milling model is established to simulate the simulation milling process, some basic parameters which are obtained in the machining process are analyzed and discussed. The results indicate that the finite element simulation of the metal cutting processing can analyze quantitatively some physical properties, such as the cutting force, stress, strain and so on, the traditional way of qualitative analysis is changed. The state of machining is in favour of grasping in the theory, the theory and technology are provided to establish the proper processing technology strategy.

2014 ◽  
Vol 611-612 ◽  
pp. 1210-1216 ◽  
Author(s):  
Farshid Jafarian ◽  
Mikel Imaz Ciaran ◽  
Pedro José Arrazola ◽  
Luigino Filice ◽  
Domenico Umbrello ◽  
...  

Inconel 718 superalloy is one of the difficult-to-machine materials which is employed widely in aerospace industries because of its superior properties such as heat-resistance, high melting temperature, and maintenance of strength and hardness at high temperatures. Material behavior of the Inconel 718 is an important challenge during finite element simulation of the machining process because of the mentioned properties. In this regard, various constants for Johnson–Cook’s constitutive equation have been reported in the literature. Owing to the fact that simulation of machining process is very sensitive to the material model, in this study the effect of different flow stresses were investigated on outputs of the orthogonal cutting process of Inconel 718 alloy. For each model, the predicted results of cutting forces, chip geometry and temperature were compared with experimental results of the previous work at the different feed rates. After comparing the results of the different models, the most suitable Johnson–Cook’s material model was indentified. Obtained results showed that the selected material model can be used reliably for machining simulation of Inconel 718 superalloy.


2014 ◽  
Vol 926-930 ◽  
pp. 362-365
Author(s):  
Gui Qiang Liang ◽  
Li Gong Cui ◽  
Fang Shao

Bionics research finds that the non-smooth morphology surfaces of some typical animals can reduce the forward resistances in the movement process. We can imitate these characteristics to reduce the machine tool wear during the machining process, which greatly promotes the machining and production procedure. Using the finite element simulation method, the effect of TC4 bio-mimetic wear-resistant cutter on cutting force, cutting temperature and micro-process were researched in-depth. The results verified the effect of bionic wear-resistant tool on the anti-friction process of metal cutting. On the other hand, we discussed the relationship between the effect and parameter of the tool surface non-smooth morphology is not smooth. Also, this paper revealed the basic principles of bionic wear-resisting tool anti-friction, which provides guidance for the selection of non-smooth morphology.


2012 ◽  
Vol 197 ◽  
pp. 139-143
Author(s):  
Hua Bai ◽  
Yi Du Zhang

The change of ambient temperature will cause deformation during the machining process of large-scale aerospace monolithic component. Based on finite element simulation, thermally induced deformation of reinforcing plate is studied in such aspects as reinforcement structure, clamping method and temperature change, and contact function in finite element software is used to simulate the unilateral constraint between workpiece and worktable. The results indicate that reinforcing plate will produce warping deformation due to the change of ambient temperature. Different reinforcement structures and clamping methods have important influence on the deformation positions and degrees, and the deformation is proportional to the temperature change.


2006 ◽  
Vol 315-316 ◽  
pp. 140-144 ◽  
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Z.J. Lv

An orthogonal cutting model was presented to simulate high-speed machining (HSM) process based on metal cutting theory and finite element method (FEM). The residual stresses in the machined surface layer were obtained with various cutting speeds using finite element simulation. The variations of residual stresses in the cutting direction and beneath the workpiece surface were studied. It is shown that the thermal load produced at higher cutting speed is the primary factor affecting the residual stress in the machined surface layer.


2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


2016 ◽  
Vol 693 ◽  
pp. 775-779
Author(s):  
J.X. Xue ◽  
H.B. Wu ◽  
Q.P. Sun

The evolution of crack models based on fracture mechanics is reviewed. The brittle cracking model in Abaqucs is used to simulate the machining process of Al2O3. The result shows that it’s appropriate to simulate the machining process of ceramics with fracture energy cracking criterion and post-failure constitutive relation in a smeared cracking representation. Although more works are needed in the future to resolve the mesh sensitivity. The material removal mechanism of ceramics is confirmed to be the brittle fracture regime.


Author(s):  
Chong-Yang Gao ◽  
Liang-Chi Zhang ◽  
Peng-Hui Liu

This paper provides a comprehensive assessment on some commonly used thermo-viscoplastic constitutive models of metallic materials during severe plastic deformation at high-strain rates. An hcp model previously established by us was improved in this paper to enhance its predictability by incorporating the key saturation characteristic of strain hardening. A compensation-based stress-updating algorithm was also developed to introduce the new hcp model into a finite element program. The improved model with the developed algorithm was then applied in finite element simulation to investigate the high-speed machining of Ti6Al4V. It was found that by using different material models, the simulated results of cutting forces, serrated chip morphologies, and residual stresses can be different too and that the improved model proposed in this paper can be applied to simulate the titanium alloy machining process more reliably due to its physical basis when compared with some other empirical Johnson–Cook models.


Sign in / Sign up

Export Citation Format

Share Document