P.2.114 Cross-domain analyses in schizophrenia — results from human brain informatics studies

2003 ◽  
Vol 13 ◽  
pp. S330
Author(s):  
H. Hall ◽  
S. Arnborg ◽  
I. Agartz ◽  
A. Sillén ◽  
E.G. Jonsson ◽  
...  
Keyword(s):  

Author(s):  
Alexander M. Petersen ◽  
Mohammed E. Ahmed ◽  
Ioannis Pavlidis

AbstractTo address complex problems, scholars are increasingly faced with challenges of integrating diverse domains. We analyzed the evolution of this convergence paradigm in the ecosystem of brain science, a research frontier that provides a contemporary testbed for evaluating two modes of cross-domain integration: (a) cross-disciplinary collaboration among experts from academic departments associated with disparate disciplines; and (b) cross-topic knowledge recombination across distinct subject areas. We show that research involving both modes features a 16% citation premium relative to a mono-domain baseline. We further show that the cross-disciplinary mode is essential for integrating across large epistemic distances. Yet we find research utilizing cross-topic exploration alone—a convergence shortcut—to be growing in prevalence at roughly 3% per year, significantly outpacing the more essential cross-disciplinary convergence mode. By measuring shifts in the prevalence and impact of different convergence modes in the 5-year intervals up to and after 2013, we find that shortcut patterns may relate to competitive pressures associated with Human Brain funding initiatives launched that year. Without policy adjustments, flagship funding programs may unintentionally incentivize suboptimal integration patterns, thereby undercutting convergence science’s potential in tackling grand challenges.



2016 ◽  
Vol 39 ◽  
Author(s):  
Giosuè Baggio ◽  
Carmelo M. Vicario

AbstractWe agree with Christiansen & Chater (C&C) that language processing and acquisition are tightly constrained by the limits of sensory and memory systems. However, the human brain supports a range of cognitive functions that mitigate the effects of information processing bottlenecks. The language system is partly organised around these moderating factors, not just around restrictions on storage and computation.



Author(s):  
K.S. Kosik ◽  
L.K. Duffy ◽  
S. Bakalis ◽  
C. Abraham ◽  
D.J. Selkoe

The major structural lesions of the human brain during aging and in Alzheimer disease (AD) are the neurofibrillary tangles (NFT) and the senile (neuritic) plaque. Although these fibrous alterations have been recognized by light microscopists for almost a century, detailed biochemical and morphological analysis of the lesions has been undertaken only recently. Because the intraneuronal deposits in the NFT and the plaque neurites and the extraneuronal amyloid cores of the plaques have a filamentous ultrastructure, the neuronal cytoskeleton has played a prominent role in most pathogenetic hypotheses.The approach of our laboratory toward elucidating the origin of plaques and tangles in AD has been two-fold: the use of analytical protein chemistry to purify and then characterize the pathological fibers comprising the tangles and plaques, and the use of certain monoclonal antibodies to neuronal cytoskeletal proteins that, despite high specificity, cross-react with NFT and thus implicate epitopes of these proteins as constituents of the tangles.



Author(s):  
C. S. Potter ◽  
C. D. Gregory ◽  
H. D. Morris ◽  
Z.-P. Liang ◽  
P. C. Lauterbur

Over the past few years, several laboratories have demonstrated that changes in local neuronal activity associated with human brain function can be detected by magnetic resonance imaging and spectroscopy. Using these methods, the effects of sensory and motor stimulation have been observed and cognitive studies have begun. These new methods promise to make possible even more rapid and extensive studies of brain organization and responses than those now in use, such as positron emission tomography.Human brain studies are enormously complex. Signal changes on the order of a few percent must be detected against the background of the complex 3D anatomy of the human brain. Today, most functional MR experiments are performed using several 2D slice images acquired at each time step or stimulation condition of the experimental protocol. It is generally believed that true 3D experiments must be performed for many cognitive experiments. To provide adequate resolution, this requires that data must be acquired faster and/or more efficiently to support 3D functional analysis.





2002 ◽  
Vol 26 (9) ◽  
pp. 761-770 ◽  
Author(s):  
R Dekroon
Keyword(s):  


Author(s):  
Paul Glees
Keyword(s):  




Sign in / Sign up

Export Citation Format

Share Document