Learning and Soft Computing, Support Vector Machines, Neural Networks, and Fuzzy Logic Models, Vojislav Kecman; MIT Press, Cambridge, MA, 2001, ISBN 0-262-11255-8, 2001, pp. 578.

2002 ◽  
Vol 47 (1-4) ◽  
pp. 305-307 ◽  
Author(s):  
Ljubo Vlacic
Author(s):  
Bharat Sundaram ◽  
Marimuthu Palaniswani ◽  
Alistair Shilton ◽  
Rezaul Begg

Computational intelligence (CI) encompasses approaches primarily based on artificial neural networks, fuzzy logic rules, evolutionary algorithms, support vector machines and also approaches that combine two or more techniques (hybrid). These methods have been applied to solve many complex and diverse problems. Recent years have seen many new developments in CI techniques and, consequently, this has led to many applications in a variety of areas including engineering, finance, social and biomedical. In particular, CI techniques are increasingly being used in biomedical and human movement areas because of the complexity of the biological systems. The main objective of this chapter is to provide a brief description of the major computational intelligence techniques for pattern recognition and modelling tasks that often appear in biomedical, health and human movement research.


Author(s):  
Bharat Sundaram ◽  
Marimuthu Palaniswani ◽  
Alistair Shilton ◽  
Rezaul Begg

Computational intelligence (CI) encompasses approaches primarily based on artificial neural networks, fuzzy logic rules, evolutionary algorithms, support vector machines and also approaches that combine two or more techniques (hybrid). These methods have been applied to solve many complex and diverse problems. Recent years have seen many new developments in CI techniques and, consequently, this has led to many applications in a variety of areas including engineering, finance, social and biomedical. In particular, CI techniques are increasingly being used in biomedical and human movement areas because of the complexity of the biological systems. The main objective of this chapter is to provide a brief description of the major computational intelligence techniques for pattern recognition and modelling tasks that often appear in biomedical, health and human movement research.


Author(s):  
Achyuth Kothuru ◽  
Sai Prasad Nooka ◽  
Rui Liu

Machining industry has been evolving towards implementation of automation into the process for higher productivity and efficiency. Although many studies have been conducted in the past to develop intelligent monitoring systems in various application scenarios of machining processes, most of them just focused on cutting tools without considering the influence due to the non-uniform hardness of workpiece material. This study develops a compact, reliable, and cost-effective intelligent Tool Condition Monitoring (TCM) model to detect the cutting tool wear in machining of the workpiece material with hardness variation. The generated audible sound signals during the machining process will be analyzed by state of the art artificial intelligent techniques, Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs), to predict the tool condition and the hardness variation of the workpiece. A four-level classification model is developed for the system to detect the tool wear condition based on the width of the flank wear land and hardness variation of the workpiece. The study also involves comparative analysis between two employed artificial intelligent techniques to evaluate the performance of models in predicting the tool wear level condition and workpiece hardness variation. The proposed intelligent models have shown a significant prediction accuracy in detecting the tool wear and from the audible sound into the proposed multi-classification wear class in the end-milling process of non-uniform hardened workpiece.


2009 ◽  
Author(s):  
◽  
Zhi Li

This research focuses on the design and implementation of an intelligent machine vision and sorting system that can be used to sort objects in an industrial environment. Machine vision systems used for sorting are either geometry driven or are based on the textural components of an object’s image. The vision system proposed in this research is based on the textural analysis of pixel content and uses an artificial neural network to perform the recognition task. The neural network has been chosen over other methods such as fuzzy logic and support vector machines because of its relative simplicity. A Bluetooth communication link facilitates the communication between the main computer housing the intelligent recognition system and the remote robot control computer located in a plant environment. Digital images of the workpiece are first compressed before the feature vectors are extracted using principal component analysis. The compressed data containing the feature vectors is transmitted via the Bluetooth channel to the remote control computer for recognition by the neural network. The network performs the recognition function and transmits a control signal to the robot control computer which guides the robot arm to place the object in an allocated position. The performance of the proposed intelligent vision and sorting system is tested under different conditions and the most attractive aspect of the design is its simplicity. The ability of the system to remain relatively immune to noise, its capacity to generalize and its fault tolerance when faced with missing data made the neural network an attractive option over fuzzy logic and support vector machines.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257901
Author(s):  
Yanjing Bi ◽  
Chao Li ◽  
Yannick Benezeth ◽  
Fan Yang

Phoneme pronunciations are usually considered as basic skills for learning a foreign language. Practicing the pronunciations in a computer-assisted way is helpful in a self-directed or long-distance learning environment. Recent researches indicate that machine learning is a promising method to build high-performance computer-assisted pronunciation training modalities. Many data-driven classifying models, such as support vector machines, back-propagation networks, deep neural networks and convolutional neural networks, are increasingly widely used for it. Yet, the acoustic waveforms of phoneme are essentially modulated from the base vibrations of vocal cords, and this fact somehow makes the predictors collinear, distorting the classifying models. A commonly-used solution to address this issue is to suppressing the collinearity of predictors via partial least square regressing algorithm. It allows to obtain high-quality predictor weighting results via predictor relationship analysis. However, as a linear regressor, the classifiers of this type possess very simple topology structures, constraining the universality of the regressors. For this issue, this paper presents an heterogeneous phoneme recognition framework which can further benefit the phoneme pronunciation diagnostic tasks by combining the partial least square with support vector machines. A French phoneme data set containing 4830 samples is established for the evaluation experiments. The experiments of this paper demonstrates that the new method improves the accuracy performance of the phoneme classifiers by 0.21 − 8.47% comparing to state-of-the-arts with different data training data density.


Sign in / Sign up

Export Citation Format

Share Document