scholarly journals Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent

2002 ◽  
Vol 18 (4) ◽  
pp. 429-440 ◽  
Author(s):  
David Steer ◽  
Lauchlan Fraser ◽  
James Boddy ◽  
Beth Seibert
2015 ◽  
Vol 41 (4) ◽  
Author(s):  
Hanna Obarska-Pempkowiak ◽  
Magdalena Gajewska ◽  
Ewa Wojciechowska ◽  
Katarzyna Kołecka

Author(s):  
Adeilton Antonio Silva Celestino ◽  
Eduardo Antonio Maia Lins ◽  
Daniele de Castro Pessoa de Melo ◽  
Diogo Henrique Fernandes da Paz

2021 ◽  
Vol 64 (2) ◽  
pp. 625-639
Author(s):  
Tiffany L. Messer ◽  
Trisha L, Moore ◽  
Natalie Nelson ◽  
Laurent Ahiablame ◽  
Eban Z. Bean ◽  
...  

Abstract. Excess nutrients from agricultural settings contribute to surface water and groundwater impairment. Constructed wetlands have been widely used for water quality protection in various agricultural systems. We used a synthesis approach to document the performance of constructed wetlands for nutrient removal from a range of landscapes and geographic regions with the following objectives: (1) review the current use of constructed wetlands in agricultural applications, (2) summarize the nutrient removal efficiency of constructed wetlands, and (3) identify the geographic usage and costs associated with constructed wetlands. We reviewed over 130 publications and reports to characterize nutrient removal performance for the following types of agricultural effluents: cropland surface and subsurface drainage, and wastewater from livestock production, greenhouse, aquaculture, and hydroponic systems. Data from the reviewed studies indicate that constructed wetlands are efficient in protecting water quality in agricultural production settings. However, differences in constructed wetland characteristics reported by the studies suggest that standards are needed to ensure nutrient removal goals are met based on wetland design. Researchers should consider including basic performance parameters for constructed wetlands in published reports, including influent and effluent concentrations, hydraulic retention time, hydraulic loading rate, watershed to treatment wetland ratios, and plant species and relative cover. Future studies are needed to explore cost-benefit analyses to assess the feasibility and potential promotion of wetland incentive programs in various geographic regions and watershed nonpoint-source pollution goals for using these systems in agricultural settings. Keywords: Agricultural wastewater, Agricultural water quality, Aquaculture, Cropland runoff, Greenhouse, Hydroponic, Livestock, Review, Subsurface, Treatment wetland.


2020 ◽  
Vol 63 (11) ◽  
pp. 3877-3892
Author(s):  
Ashley Parker ◽  
Candace Slack ◽  
Erika Skoe

Purpose Miniaturization of digital technologies has created new opportunities for remote health care and neuroscientific fieldwork. The current study assesses comparisons between in-home auditory brainstem response (ABR) recordings and recordings obtained in a traditional lab setting. Method Click-evoked and speech-evoked ABRs were recorded in 12 normal-hearing, young adult participants over three test sessions in (a) a shielded sound booth within a research lab, (b) a simulated home environment, and (c) the research lab once more. The same single-family house was used for all home testing. Results Analyses of ABR latencies, a common clinical metric, showed high repeatability between the home and lab environments across both the click-evoked and speech-evoked ABRs. Like ABR latencies, response consistency and signal-to-noise ratio (SNR) were robust both in the lab and in the home and did not show significant differences between locations, although variability between the home and lab was higher than latencies, with two participants influencing this lower repeatability between locations. Response consistency and SNR also patterned together, with a trend for higher SNRs to pair with more consistent responses in both the home and lab environments. Conclusions Our findings demonstrate the feasibility of obtaining high-quality ABR recordings within a simulated home environment that closely approximate those recorded in a more traditional recording environment. This line of work may open doors to greater accessibility to underserved clinical and research populations.


2001 ◽  
Author(s):  
M. Phillips ◽  
N. Esmen ◽  
D. Johnson ◽  
T. Hall ◽  
R. Lynch ◽  
...  

Author(s):  
Antanas DUMBRAUSKAS ◽  
Nijolė BASTIENĖ ◽  
Petras PUNYS

GIS-based approach to find the suitable sites for surface flow constructed wetlands was employed for the Lithuanian river basins with low ecological status. According to the nature of the analysed criteria the flowchart consists of two phases. Criteria used include hydrographical network, soil properties, terrain features, land use, etc. Some of them have strictly defined values (constraints), and other ranges within certain limits (factors). Limited criteria were analysed using rejection principle and influencing factors using proximity analysis and overlay methods. Selecting the potential sites using standard GIS analysis tools there was estimated about 3286 sites for possible wetlands with the mean area of inflow basin about 4 km2 in the basins of water bodies at risk.


Sign in / Sign up

Export Citation Format

Share Document