Modelling the fracture behaviour of high speed steels using finite element method

1996 ◽  
Vol 7 (1-2) ◽  
pp. 123-130 ◽  
Author(s):  
N. Lippmann ◽  
A. Lehmann ◽  
Th. Steinkopff ◽  
H.-J. Spies
2020 ◽  
Vol 14 (27) ◽  
pp. 55-66
Author(s):  
Hugo Leonardo Murcia Gallo ◽  
Richard Lionel Luco Salman ◽  
David Ignacio Fuentes Montaña

The main objective of this study is to analyze the structural response of a boat during a slamming event using the Finite Element Method in a Small Water Area Twin Hull (SWATH) type boat.  In the mentioned load condition, the acceptance criteria established by a classification society must be fulfilled, taking into account the areas where this event affects the structure such as the junction deck, the pontoons and other structural members established by the standard, all this generated by the high pressure loads in the ship's structure in a very short period of time being an element of study in this type of vessels, as long as they are within the range of high speed vessels. Among the main results of this study were the deformations and stresses in the structure obtained under the reference parameters of the classification society.


2013 ◽  
Vol 683 ◽  
pp. 556-559
Author(s):  
Bin Bin Jiao ◽  
Fu Sheng Yu ◽  
Yun Jiang Li ◽  
Rong Lu Zhang ◽  
Gui Lin Du ◽  
...  

In order to study the distribution of the stress field in the high-speed intermittent cutting process, finite element model of high-speed intermittent cutting is established. Exponential material model of the constitutive equation and adaptive grid technology are applied in the finite element analysis software AdvantEdge. The material processing is simulated under certain cutting conditions with FEM ( Finite Element Method ) and the distribution of cutting force, stress field, and temperature field are received. A periodic variation to the cutting force and temperature is showed in the simulation of high-speed intermittent cutting. Highest value of the milling temperature appears in front contacting area of the knife -the chip.and maximum stress occurs at the tip of tool or the vicinity of the main cutting edge. The analysis of stress and strain fields in-depth is of great significance to improve tool design and durability of tool.


Author(s):  
M. A. Kabir ◽  
C. F. Higgs ◽  
M. R. Lovell ◽  
V. Jasti ◽  
M. C. Marinack

Explicit finite element method modeling of granular flow behavior in an annular shear cell has been studied and presented in this paper. The explicit finite element method (FEM) simulations of granular flow in an annular shear cell with around 1633 particles were performed, where the inner wheel rotated at a very high speed and the outer disk remained stationary. The material properties of the particles and the outer wheel were defined as elastic steel whereas the inner wheel was elastic aluminum. In this investigation, the explicit FEM model mimicked granular flow in an experimental set up where the inner wheel was rotated at a speed of 240 rpm. The FEM results for shearing motion and solid fraction were compared with experimental results from a granular shear cell.


2009 ◽  
Vol 626-627 ◽  
pp. 249-254
Author(s):  
Wang Yu Liu ◽  
X.K. Liu ◽  
Jing Li ◽  
Yong Zhang

Combined the analytic method with the finite element method, the data necessary for calculating the heat distribution ratio for high speed cutting was mined first, and the experimental result was used to validate the authenticity of finite element modeling. Then, the ratio of heat distribution for high speed cutting based on the analytic model was obtained by customizing the special subroutine developed by the authors, which provides a new method for calculating the heat distribution.


Sign in / Sign up

Export Citation Format

Share Document