Fracture behaviour of human skin in deep needle insertion can be captured using validated cohesive zone finite-element method

Author(s):  
Hossein Mohammadi ◽  
Arash Ebrahimian ◽  
Nima Maftoon
Author(s):  
Mohamad Ghodrati ◽  
Mehdi Ahmadian ◽  
Reza Mirzaeifar

A micromechanical-based 2D framework is presented to study the rolling contact fatigue (RCF) in rail steels using finite element method. In this framework, the contact patch of rail and wheel is studied by explicitly modeling the grains and grain boundaries, to investigate the potential origin of RCF at the microstructural level. The framework incorporates Voronoi tessellation algorithm to create the microstructure geometry of rail material, and uses cohesive zone approach to simulate the behavior of grain boundaries. To study the fatigue damage caused by cyclic moving of wheels on rail, Abaqus subroutines are employed to degrade the material by increasing the number of cycles, and Jiang-Sehitoglu fatigue damage law is employed as evolution law. By applying Hertzian moving cyclic load, instead of wheel load, the effect of traction ratio and temperature change on RCF initiation and growth are studied. By considering different traction ratios (0.0 to 0.5), it is shown that increasing traction ratio significantly increases the fatigue damage. Also by increasing traction ratio, crack initiation migrates from the rail subsurface to surface. The results also show that there are no significant changes in the growth of RCF at higher temperatures, but at lower temperatures there is a measurable increase in RCF growth. This finding correlates with anecdotal information available in the rail industry about the seasonality of RCF, in which some railroads report noticing more RCF damage during the colder months.


Author(s):  
Martin Booth ◽  
Michael Martin

Zirconium alloys, as used in water-cooled nuclear reactors, are susceptible to a time-dependent failure mechanism known as Delayed Hydride Cracking, or DHC. Corrosion of zirconium alloy in the presence of water generates hydrogen that subsequently diffuses through the metallic structure in response to concentration, temperature and hydrostatic stress gradients. As such, regions of increased hydrogen concentration develop at stress concentrating features, leading to zirconium hydride precipitation. Regions containing zirconium hydride are brittle and prone to failure if plant transient loads are sufficient. This paper demonstrates the application of the Extended Finite Element Method, or XFEM, to the assessment of the DHC susceptibility of stress concentrating features, typical of those considered in the structural integrity assessment of heavy water pressure tube reactors. The method enables the calculation of a DHC threshold load. This paper builds on the process-zone approach that is currently used to provide the industry-standard DHC assessment of zirconium alloy pressure tubes and also recent developments that have extended the application of the process-zone approach to arbitrary geometries by the use of finite element cohesive-zone analysis. In the standard cohesive-zone approach, regions of cohesive elements are situated in discrete locations where the formation of zirconium hydride is anticipated. In contrast, the use of XFEM based cohesive formulations removes the requirement to define cohesive zones a priori, thereby allowing the assessment of geometries in which the location of hydride material is not known.


2019 ◽  
Vol 227 ◽  
pp. 117078 ◽  
Author(s):  
Jonas Kollmann ◽  
Pengfei Liu ◽  
Guoyang Lu ◽  
Dawei Wang ◽  
Markus Oeser ◽  
...  

1996 ◽  
Vol 7 (1-2) ◽  
pp. 123-130 ◽  
Author(s):  
N. Lippmann ◽  
A. Lehmann ◽  
Th. Steinkopff ◽  
H.-J. Spies

Sign in / Sign up

Export Citation Format

Share Document