Strength Design on Permanent Magnet Rotor in High Speed Motor Using Finite Element Method

Author(s):  
Tao Zhang ◽  
Xiaoting Ye ◽  
Huiping Zhang ◽  
Hongyun Jia
2020 ◽  
Vol 14 (27) ◽  
pp. 55-66
Author(s):  
Hugo Leonardo Murcia Gallo ◽  
Richard Lionel Luco Salman ◽  
David Ignacio Fuentes Montaña

The main objective of this study is to analyze the structural response of a boat during a slamming event using the Finite Element Method in a Small Water Area Twin Hull (SWATH) type boat.  In the mentioned load condition, the acceptance criteria established by a classification society must be fulfilled, taking into account the areas where this event affects the structure such as the junction deck, the pontoons and other structural members established by the standard, all this generated by the high pressure loads in the ship's structure in a very short period of time being an element of study in this type of vessels, as long as they are within the range of high speed vessels. Among the main results of this study were the deformations and stresses in the structure obtained under the reference parameters of the classification society.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 243-248
Author(s):  
Doudou Sarr Lo ◽  
Yacine Amara ◽  
Georges Barakat ◽  
Ferhat Chabour

Abstract The aim of this paper is to explore the possibility of using linear tubular flux switching permanent magnet machines in a free piston energy conversion (FPEC) system. In FPEC systems, acceleration and therefore speed are often relatively high, which impose to have a reduced number of poles, meanwhile the cogging force will be relatively high. In order to reduce the cogging force two techniques are combined. The analysis is done using finite element method.


Sign in / Sign up

Export Citation Format

Share Document