Transport through semiconductor quantum systems in the R-matrix formalism

1998 ◽  
Vol 11 (2) ◽  
pp. 117-121 ◽  
Author(s):  
U. Wulf ◽  
J. Kučera ◽  
E. Sigmund
1976 ◽  
Vol 29 (4) ◽  
pp. 245 ◽  
Author(s):  
FC Barker ◽  
GM Crawley ◽  
PS Miller ◽  
WF Steele

The ghost of the 8Be ground state has been observed in the 9Be(p, d)8Be reaction, and fitted using a many-level R-matrix formalism.


2020 ◽  
pp. 211-234
Author(s):  
Giuseppe Mussardo

This chapter deals with the exact solution of the two-dimensional Ising model as it is achieved through the transfer matrix formalism. It discusses the crucial role played by the commutative properties of the transfer matrices, which lead to a functional equation for their eigenvalues. The exact free energy of the Ising model and its critical point can be identified by means of the lowest eigenvalue. The chapter covers Baxter's approach, the Yang–Baxter equation and its relation to the Boltzmann weights, the R-matrix, and discusses activity away from the critical point, the six-vertex model, as well as functional equations and symmetries.


1968 ◽  
Vol 21 (6) ◽  
pp. 769
Author(s):  
JL Cook

The possible application of reaction matrix theory to pion-nucleon processes is discussed. It is found that suitable boundary conditions can remove the effects of the nucleon-pion cloud, leading to the conventional R-matrix formalism. A simple dynamical channel.coupling scheme is proposed which permits full analysis of experiments.


1972 ◽  
Vol 50 (2) ◽  
pp. 84-92 ◽  
Author(s):  
C. T. Tindle

The low energy neutron cross section of 135Xe is analyzed using both the R-matrix theory of Wigner and Eisenbud and the S-matrix theory of Humblet and Rosenfeld. Particular attention is given to the role played by the total resonance level width for it is well known that the R-matrix widths are energy dependent but the S-matrix widths are not. This different energy dependence leads to different analytic forms for the cross section and the n + 135Xe reaction offers what may be the simplest and best physical example for comparing these two forms. To the accuracy of the present data the difference is not detectable. The different energy dependence of the resonance widths is shown to be related to unitarity. A general proof that the R-matrix formalism is always unitary is given. The difficulty of satisfying unitarity in the S-matrix formalism is discussed and it is shown for the n + 135Xe reactions that this can lead to physically unacceptable solutions. This "lack of unitarity" does not, however, lead to any difficulties in fitting the present experimental data.


Author(s):  
Jorge Tabanera ◽  
Inés Luque ◽  
Samuel L. Jacob ◽  
Massimiliano Esposito ◽  
Felipe Barra ◽  
...  

Abstract Collisional reservoirs are becoming a major tool for modelling open quantum systems. In their simplest implementation, an external agent switches on, for a given time, the interaction between the system and a specimen from the reservoir. Generically, in this operation the external agent performs work onto the system, preventing thermalization when the reservoir is at equilibrium. One can recover thermalization by considering an autonomous global setup where the reservoir particles colliding with the system possess a kinetic degree of freedom. The drawback is that the corresponding scattering problem is rather involved. Here, we present a formal solution of the problem in one dimension and for flat interaction potentials. The solution is based on the transfer matrix formalism and allows one to explore the symmetries of the resulting scattering map. One of these symmetries is micro-reversibility, which is a condition for thermalization. We then introduce two approximations of the scattering map that preserve these symmetries and, consequently, thermalize the system. These relatively simple approximate solutions constitute models of quantum thermostats and are useful tools to study quantum systems in contact with thermal baths. We illustrate their accuracy in a specific example, showing that both are good approximations of the exact scattering problem even in situations far from equilibrium. Moreover, one of the models consists of the removal of certain coherences plus a very specific randomization of the interaction time. These two features allow one to identify as heat the energy transfer due to switching on and off the interaction. Our results prompt the fundamental question of how to distinguish between heat and work from the statistical properties of the exchange of energy between a system and its surroundings.


2021 ◽  
pp. 127865
Author(s):  
Dragoş-Victor Anghel ◽  
Amanda Teodora Preda ◽  
George Alexandru Nemnes

2018 ◽  
Vol 27 (04) ◽  
pp. 1850038
Author(s):  
F. Moncada ◽  
J. L. Paz ◽  
L. Lascano ◽  
C. Costa-Vera

Effects of spectral diffusion on the third-order nonlinear susceptibility for two- and three-level quantum systems, immersed in a thermal reservoir, are evaluated with a four-wave mixing (FWM) signal through the density matrix formalism. For this, inhomogeneously broadened two- and three-level quantum systems are used. In these models, the distribution of natural frequencies follows a Lorentzian function. The absorptive and dispersive nonlinear optical responses are determined for the considered quantum models. The results presented in this work show potential applications in the development of optical switches and provide a potential method to measure spectral diffusion relaxation times in three-level quantum systems.


Sign in / Sign up

Export Citation Format

Share Document