The high energy muon spectrum in Extensive Air Showers: first data from LVD and EAS-TOP at Gran Sasso

1998 ◽  
Vol 9 (3) ◽  
pp. 185-192 ◽  
Author(s):  
M. Aglietta ◽  
B. Alessandro ◽  
B. Alpat ◽  
E.D. Alyea ◽  
P. Antonioli ◽  
...  
1968 ◽  
Vol 46 (10) ◽  
pp. S189-S196 ◽  
Author(s):  
K. O. Thielheim ◽  
E. K. Schlegel ◽  
R. Beiersdorf

Three-dimensional Monte Carlo calculations have been performed on the trajectories of high-energy hadrons in extensive air showers. The central electron density and gradient of distribution are obtained for individual electromagnetic cascades together with coordinates at the level of observation. Various assumptions concerning primary mass number and energy, distributions of strong interaction parameters, and fragmentation mechanisms are discussed with respect to the production of steep maxima of electron density by single electromagnetic cascades in the core region of extensive air showers.


2019 ◽  
Vol 210 ◽  
pp. 02010
Author(s):  
Analisa G. Mariazzi ◽  

In order to get the primary energy of cosmic rays from their extensive air showers using the fluorescence detection technique, the invisible energy should be added to the measured calorimetric energy. The invisible energy is the energy carried away by particles that do not deposit all their energy in the atmosphere. It has traditionally been calculated using Monte Carlo simulations that are dependent on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work the invisible energy is obtained directly from events detected by the Pierre Auger Observatory. The method applied is based on the correlation of the measurements of the muon number at the ground with the invisible energy of the showers. By using it, the systematic uncertainties related to the unknown mass composition and to the high energy hadronic interaction models are significantly reduced, improving in this way the estimation of the energy scale of the Observatory.


Author(s):  
A. Aab ◽  
◽  
P. Abreu ◽  
M. Aglietta ◽  
J. M. Albury ◽  
...  

Abstract The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between $$2\times 10^{17}$$2×1017 and $$2\times 10^{18}$$2×1018 eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector with those from the Auger fluorescence detector at $$10^{{17.5}}\, {\mathrm{eV}} $$1017.5eV and $$10^{{18}}\, {\mathrm{eV}} $$1018eV. We find that, for the models to explain the data, an increase in the muon density of $$38\%$$38%$$\pm 4\% (12\%)$$±4%(12%)$$\pm {}^{21\%}_{18\%}$$±18%21% for EPOS-LHC, and of $$50\% (53\%)$$50%(53%)$$\pm 4\% (13\%)$$±4%(13%)$$\pm {}^{23\%}_{20\%}$$±20%23% for QGSJetII-04, is respectively needed.


2019 ◽  
Vol 208 ◽  
pp. 11002 ◽  
Author(s):  
Felix Riehn ◽  
Ralph Engel ◽  
Anatoli Fedynitch ◽  
Thomas K. Gaisser ◽  
Todor Stanev

One of the applications of the hadronic interaction model Sibyll is the simulation of extensive air showers of ultra-high energy cosmic rays. In recent years it has become more and more clear that simulations do not agree with measurements when it comes to observables related to muons in air showers. We discuss the processes in Sibyll that are directly related to muon production in extensive air showers and describe their relation to shower observables.


2005 ◽  
Vol 20 (29) ◽  
pp. 6869-6871 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

We present the characteristics and performance of a demonstration experiment devoted to the observation of ultra high-energy cosmic ray extensive air showers using a radiodetection technique. In a first step, one antenna narrowed band filtered acting as trigger, with a 4σ threshold above sky background-level, was used to tag any radio transient in coincidence on the antenna array. Recently, the addition of 4 particle detectors has allowed us to observe cosmic ray events in coincidence with antennas.


Sign in / Sign up

Export Citation Format

Share Document