A poly(ortho ester) designed for combined ocular delivery of dexamethasone sodium phosphate and 5-fluorouracil: subconjunctival tolerance and in vitro release

2000 ◽  
Vol 50 (2) ◽  
pp. 251-255 ◽  
Author(s):  
M Zignani
1970 ◽  
Vol 2 (1) ◽  
pp. 56-60
Author(s):  
Nazia Zaman ◽  
Md Mesbah Uddin Talukder ◽  
Tasnuva Haque ◽  
Md Khairul Alam ◽  
Kanij Fatema

The present study was carried out to develop biodegradable intrascleral implants of Dexamethasone Sodium Phosphate and to evaluate the release pattern of the drug from the prepared implants. Intrascleral implants were prepared by using biodegradable polymer L-PLA (m.wt. 61,200 Da). Sodium chloride (NaCl), gelatin and glycerol monostearate (GMS) were used in various formulations to observe the effects of these additives on the release of Dexamethasone Sodium Phosphate from the prepared L-PLA based intrascleral implants. Five different formulations were prepared for this study and were coded as FD-1 (10%drug+L-PLA), FD-2 (20%drug+L-PLA), FD-3 (10%drug+L-PLA+5%NaCl), FD-4 (10%drug+L-PLA +5%Gelatin) and FD-5 (10%drug+L-PLA+10% GMS). Discs were prepared and made into appropriate shape before submerging into the buffer solution of pH 7.4 in different vials. The in vitro release profile of Dexamethasone Sodium Phosphate from the implants showed a biphasic release pattern with an initial burst followed by a diffusive phase. It was observed that FD-1 and FD-2 showed 19.63% and 29.87% release on the first day and 24.22% and 38.5% release respectively at day 30. The drug loading of FD-1 and FD-2 was 10% and 20% respectively. Among FD-3, FD-4 and FD-5; FD-3 showed highest release (32.1%) at day 30 in which 5% NaCl was used. FD-4 showed 27.45% release at day 30 where gelatin, a hydrophilic agent was used and FD-5 containing GMS, a lipid material, was found to be most retarding (19.22% at day 30). The results of the dissolution study provide an idea that L-PLA may be successfully used for the preparation of biodegradable intrascleral implant of Dexamethasone Sodium Phosphate. Key words: Dexamethasone Sodium Phosphate; Bioidegradable polymer; Intrascleral implants. DOI: 10.3329/sjps.v2i1.5817Stamford Journal of Pharmaceutical Sciences Vol.2(1) 2009: 56-60


2012 ◽  
Vol 48 (3) ◽  
pp. 109-117 ◽  
Author(s):  
E. Prieto ◽  
B. Puente ◽  
A. Uixera ◽  
J.A. Garcia de Jalon ◽  
S. Perez ◽  
...  

2003 ◽  
Vol 20 (5) ◽  
pp. 569-579 ◽  
Author(s):  
S.-A. Seo ◽  
G. Khang ◽  
J. M. Rhee ◽  
J. Kim ◽  
H. B. Lee

1987 ◽  
Vol 57 (02) ◽  
pp. 201-204 ◽  
Author(s):  
P Y Scarabin ◽  
L Strain ◽  
C A Ludlam ◽  
J Jones ◽  
E M Kohner

SummaryDuring the collection of samples for plasma β-thromboglobulin (β-TG) determination, it is well established that artificially high values can be observed due to in-vitro release. To estimate the reliability of a single β-TG measurement, blood samples were collected simultaneously from both arms on two separate occasions in 56 diabetic patients selected for a clinical trial. From each arm, blood was taken into two tubes containing an anticoagulant mixture with (tube A) and without (tube B) PGE!. The overall mean value of B-TG in tube B was 1.14 times higher than in tube A (p <0.01). The markedly large between-arms variation accounted for the most part of within-subject variation in both tubes and was significantly greater in tube B than in tube A. Based on the difference between B-TG values from both arms, the number of subjects with artifically high B-TG values was significantly higher in tube B than in tube A on each occasion (overall rate: 28% and 14% respectively). Estimate of between-occasions variation showed that B-TG levels were relatively stable for each subject between two occasions in each tube. It is concluded that the use of PGEi decreases falsely high B-TG levels, but a single measurement of B-TG does not provide a reliable estimate of the true B-TG value in vivo.


Author(s):  
Shanmuganathan S. ◽  
Nigma S. ◽  
Anbarasan B. ◽  
Harika B.

Nanoparticulate Carriers which is biodegradable, biocompatible and bio adhesive have significant feasible applications for administration of therapeutic molecules. The present study was aimed to formulate and optimise Capecitabine loaded Chitosan-Fe3O4 Nanoparticles and to study the in-vitro evaluation by sigma dialysis method. Capecitabine loaded chitosan – Fe3O4 nanoparticles batches with different ratios of drug: polymer (1:1, 1:2, 1:3, 1:4, 1:5, 1:6) were prepared by ionic gelation method. Increase in polymer concentration increases the nanoparticle drug content. Entrapment efficiency was 60.12% with drug to polymer ratio F3 (1:3). In-vitro release was found to be 65.20% for 12 hrs. Capecitabine from chitosanFe3O4 nanoparticles SEM image reveals discrete spherical structure and particles with size range of 100-500nm. FTIR studies represent the functional groups present with no characteristics change in formulations. Samples stored at refrigerator conditions showed better stability compared with samples kept at other conditions during 8 weeks of storage.


Sign in / Sign up

Export Citation Format

Share Document