Evaluation of superporous hydrogel (SPH) and SPH composite in porcine intestine ex-vivo: assessment of drug transport, morphology effect, and mechanical fixation to intestinal wall

2002 ◽  
Vol 53 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Farid A Dorkoosh ◽  
Gerrit Borchard ◽  
Morteza Rafiee-Tehrani ◽  
J.Coos Verhoef ◽  
Hans E Junginger
Author(s):  
Kari E. Bevevino ◽  
John F. Edwards ◽  
Noah D. Cohen ◽  
Cristobal Navas Solis
Keyword(s):  
Ex Vivo ◽  

2020 ◽  
Vol 6 (26) ◽  
pp. eaba4498 ◽  
Author(s):  
Shreya Goel ◽  
Guodong Zhang ◽  
Prashant Dogra ◽  
Sara Nizzero ◽  
Vittorio Cristini ◽  
...  

It is challenging to design effective drug delivery systems (DDS) that target metastatic breast cancers (MBC) because of lack of competent imaging and image analysis protocols that suitably capture the interactions between DDS and metastatic lesions. Here, we integrate high temporal resolution of in vivo whole-body PET-CT, ex vivo whole-organ optical imaging, high spatial resolution of confocal microscopy, and mathematical modeling, to systematically deconstruct the trafficking of injectable nanoparticle generators encapsulated with polymeric doxorubicin (iNPG-pDox) in pulmonary MBC. iNPG-pDox accumulated substantially in metastatic lungs, compared to healthy lungs. Intratumoral distribution and retention of iNPG-pDox varied with lesion size, possibly induced by locally remodeled microenvironment. We further used multiscale imaging and mathematical simulations to provide improved drug delivery strategies for MBC. Our work presents a multidisciplinary translational toolbox to evaluate transport and interactions of DDS within metastases. This knowledge can be recursively applied to rationally design advanced therapies for metastatic cancers.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1640
Author(s):  
Sreeja C. Nair ◽  
Kollencheri Puthenveettil Vinayan ◽  
Sabitha Mangalathillam

An acute epileptic seizure is a seizure emergency fatal condition that requires immediate medical attention. IV phenytoin sodium remains the second line therapeutic agent for the immediate treatment of status epilepticus. Phenytoin sodium formulated as nanolipid carriers (NLCs) seems to be promising as an intranasal delivery system for controlling acute seizures. Three different nanosized phenytoin sodium loaded NLCs (<50 nm, 50–100 nm and >100 nm) were prepared by melt emulsification and was further characterised. In vitro drug release studies showed immediate drug release from phenytoin sodium loaded NLCs of <50 nm size, which is highly essential for acute seizure control. The ex vivo permeation study indicated greater permeation from <50 nm sized NLC through the olfactory epithelium compared to thecontrol drug solution. Invivo pharmacokinetic studies revealed higher drug concentration in CSF/brain within 5 min upon intranasal administration of <50 nm sized phenytoin sodium NLCs than the control drug solution and marketed IV phenytoin sodium, indicating direct and rapid nose to brain drug transport through the olfactory epithelium. The study has shown that formulation strategies can enhance olfactory uptake, and phenytoin sodium NLCs of desired particle sizes (<50 nm) offer promising potential for nose to brain direct delivery of phenytoin sodium in treating acute epileptic seizures.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hitesh Chavda ◽  
Ishan Modhia ◽  
Anant Mehta ◽  
Rupal Patel ◽  
Chhagan Patel

Bioadhesive superporous hydrogel composite (SPHC) particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content,in vitrodrug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.


2016 ◽  
Vol 57 (5) ◽  
pp. 534-545 ◽  
Author(s):  
Alexandre B. Le Roux ◽  
L. Abbigail Granger ◽  
Nobuko Wakamatsu ◽  
Michael T. Kearney ◽  
Lorrie Gaschen

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2395
Author(s):  
Peisen Zhang ◽  
Jing Li ◽  
Weimin Zhang ◽  
Yang Hao ◽  
Gastone Ciuti ◽  
...  

A magnetically-guided capsule endoscope, embedding flexible force sensors, is designed to measure the capsule-tissue interaction force. The flexible force sensor is composed of eight force-sensitive elements surrounding the internal permanent magnet (IPM). The control of interaction force acting on the intestinal wall can reduce patient’s discomfort and maintain the magnetic coupling between the external permanent magnet (EPM) and the IPM during capsule navigation. A flexible force sensor can achieve this control. In particular, by analyzing the signals of the force sensitive elements, we propose a method to recognize the status of the motion of the magnetic capsule, and provide corresponding formulas to evaluate whether the magnetic capsule follows the motion of the external driving magnet. Accuracy of the motion recognition in Ex Vivo tests reached 94% when the EPM was translated along the longitudinal axis. In addition, a method is proposed to realign the EPM and the IPM before the loss of their magnetic coupling. Its translational error, rotational error, and runtime are 7.04 ± 0.71 mm, 3.13 ± 0.47∘, and 11.4 ± 0.39 s, respectively. Finally, a control strategy is proposed to prevent the magnetic capsule endoscope from losing control during the magnetically-guided capsule colonoscopy.


2019 ◽  
Vol 9 (5) ◽  
pp. 20190031 ◽  
Author(s):  
Rajeendra L. Pemathilaka ◽  
David E. Reynolds ◽  
Nicole N. Hashemi

In the past few decades, the placenta became a very controversial topic that has had many researchers and pharmacists discussing the significance of the effects of pharmaceutical drug intake and how it is a possible leading cause towards birth defects. The creation of an in vitro microengineered model of the placenta can be used to replicate the interactions between the mother and fetus, specifically pharmaceutical drug intake reactions. As the field of nanotechnology significantly continues growing, nanotechnology will become more apparent in the study of medicine and other scientific disciplines, specifically microengineering applications. This review is based on past and current research that compares the feasibility and testing of the placenta-on-a-chip microengineered model to the previous and underdeveloped in vivo and ex vivo approaches. The testing of the practicality and effectiveness of the in vitro , in vivo and ex vivo models requires the experimentation of prominent pharmaceutical drugs that most mothers consume during pregnancy. In this case, these drugs need to be studied and tested more often. However, there are challenges associated with the in vitro , in vivo and ex vivo processes when developing a practical placental model, which are discussed in further detail.


2014 ◽  
Vol 37 (4) ◽  
pp. 332-337 ◽  
Author(s):  
M. Ballent ◽  
L. Maté ◽  
G. Virkel ◽  
J. Sallovitz ◽  
P. Viviani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document