Structural modeling for global response analysis of VLFS

2001 ◽  
Vol 14 (3) ◽  
pp. 295-310 ◽  
Author(s):  
Masahiko Fujikubo ◽  
Tetsuya Yao
Author(s):  
Mauricio Gutierrez Salas ◽  
Ronnie Bladh ◽  
Hans Mårtensson ◽  
Paul Petrie-Repar ◽  
Torsten Fransson ◽  
...  

Accurate structural modeling of blisk mistuning is critical for the analysis of forced response in turbomachinery. Apart from intentional mistuning, mistuning can be due to the manufacturing tolerances, corrosion, foreign object damage and in-service wear in general. It has been shown in past studies that mistuning can increase the risk of blade failure due to energy localization. For weak blade to blade coupling, this localization has been shown to be critical and higher amplitudes of vibration are expected in few blades. This paper presents a comparison of three reduced order models for the structural modeling of blisks. Two of the models assume cyclic symmetry while the third model is free of this assumption. The performance of the reduced order models for cases with small and large amount of mistuning will be examined. The benefits and drawbacks of each reduction method will be discussed.


2012 ◽  
Author(s):  
Pao-Lin Tan ◽  
Brad Mobbs ◽  
Michael John Perry ◽  
John James Stiff ◽  
Douglas J. Stock

Author(s):  
Andrew S. Zurkinden ◽  
Lars Damkilde ◽  
Zhen Gao ◽  
Torgeir Moan

This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects the WEC to a jackup structure. The wave energy converter is characterized by having an operational and survival mode. The survival mode drastically reduces the exposure to waves and therfore to the wave loads. Structural response analysis of the Wavestar arm is carried out in this study. Due to the relative stiff behavior of the arm the calculation can be reduced to a quasi-static analysis. The hydrodynamic and the structural analyses are thus performed separately. In order to reduce the computational time of the finite element calculation the main structure is modeled as a superelement. The structural detail, where the stress analysis is carried out, is connected with the superstructure by interface nodes. The analysis is conducted for two different control situations. Numerical results will be presented which can be further used to carry out fatigue analysis in which a more refined FE model is required to obtain the stress concentration factors.


2014 ◽  
Vol 891-892 ◽  
pp. 123-129 ◽  
Author(s):  
Ingrit Lillemäe ◽  
Heikki Remes ◽  
Jani Romanoff

Due to economic reasons the industry is seeking new lightweight solutions for large steel structures. However, when moving from traditional steel plate thicknesses, i.e. 5 mm or larger, to thinner ones, the fatigue design becomes challenging due to larger initial distortions caused by welding. The fatigue assessment methods used for thicker welded structures are not fully validated for thinner ones. This paper deals with the fatigue assessment of large thin-walled structures starting from the global response analysis of a whole structure to the stiffened panel and finally welded joint. A modern cruise ship is used as an example case, where traditional superstructure deck plate thickness of 5 mm is replaced by 3 mm. The influence of initial distortion at different levels of structural analysis is studied using geometrically nonlinear finite element (FE) analysis. For the lowest level of analysis, i.e. small welded joint, the experiments have been carried out including geometry measurements and fatigue tests. It is shown that for a large thin-walled structure the global response analysis can be carried out with acceptable accuracy using ideally straight plates and geometrically linear FE analysis. For intermediate level of analysis, i.e. stiffened panel, the analysis can also be geometrically linear, but the actual shape of the plates influences the structural stresses near welds significantly. When analyzing small welded specimens to define experimental fatigue strength, both the actual shape and the geometrically nonlinear FE analysis are needed in order to capture the straightening effect and to obtain the correct structural stress.


Author(s):  
Mauricio Gutierrez Salas ◽  
Ronnie Bladh ◽  
Hans Mårtensson ◽  
Paul Petrie-Repar ◽  
Torsten Fransson ◽  
...  

Accurate structural modeling of blisk mistuning is critical for the analysis of forced response in turbomachinery. Apart from intentional mistuning, mistuning can be due to the manufacturing tolerances, corrosion, foreign object damage, and in-service wear in general. It has been shown in past studies that mistuning can increase the risk of blade failure due to energy localization. For weak blade to blade coupling, this localization has been shown to be critical and higher amplitudes of vibration are expected in few blades. This paper presents a comparison of three reduced order models (ROMs) for the structural modeling of blisks. Two of the models assume cyclic symmetry, while the third model is free of this assumption. The performance of the reduced order models for cases with small and large amount of mistuning will be examined. The benefits and drawbacks of each reduction method will be discussed.


2020 ◽  
Vol 477 (2) ◽  
pp. 459-459
Author(s):  
Lalith K. Chaganti ◽  
Shubhankar Dutta ◽  
Raja Reddy Kuppili ◽  
Mriganka Mandal ◽  
Kakoli Bose

Sign in / Sign up

Export Citation Format

Share Document