Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method

Author(s):  
Andrew S. Zurkinden ◽  
Lars Damkilde ◽  
Zhen Gao ◽  
Torgeir Moan

This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects the WEC to a jackup structure. The wave energy converter is characterized by having an operational and survival mode. The survival mode drastically reduces the exposure to waves and therfore to the wave loads. Structural response analysis of the Wavestar arm is carried out in this study. Due to the relative stiff behavior of the arm the calculation can be reduced to a quasi-static analysis. The hydrodynamic and the structural analyses are thus performed separately. In order to reduce the computational time of the finite element calculation the main structure is modeled as a superelement. The structural detail, where the stress analysis is carried out, is connected with the superstructure by interface nodes. The analysis is conducted for two different control situations. Numerical results will be presented which can be further used to carry out fatigue analysis in which a more refined FE model is required to obtain the stress concentration factors.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1731
Author(s):  
Dan Montoya ◽  
Elisabetta Tedeschi ◽  
Luca Castellini ◽  
Tiago Martins

Wave energy is nowadays one of the most promising renewable energy sources; however, wave energy technology has not reached the fully-commercial stage, yet. One key aspect to achieve this goal is to identify an effective control strategy for each selected Wave Energy Converter (WEC), in order to extract the maximum energy from the waves, while respecting the physical constraints of the device. Model Predictive Control (MPC) can inherently satisfy these requirements. Generally, MPC is formulated as a quadratic programming problem with linear constraints (e.g., on position, speed and Power Take-Off (PTO) force). Since, in the most general case, this control technique requires bidirectional power flow between the PTO system and the grid, it has similar characteristics as reactive control. This means that, under some operating conditions, the energy losses may be equivalent, or even larger, than the energy yielded. As many WECs are designed to only allow unidirectional power flow, it is necessary to set nonlinear constraints. This makes the optimization problem significantly more expensive in terms of computational time. This work proposes two MPC control strategies applied to a two-body point absorber that address this issue from two different perspectives: (a) adapting the MPC formulation to passive loading strategy; and (b) adapting linear constraints in the MPC in order to only allow an unidirectional power flow. The results show that the two alternative proposals have similar performance in terms of computational time compared to the regular MPC and obtain considerably more power than the linear passive control, thus proving to be a good option for unidirectional PTO systems.


Author(s):  
Yutaro Sasahara ◽  
Mitsuhiro Masuda ◽  
Kiyokazu Minami

When concrete examination towards utilization is needed, it is necessary to estimate the safety and the performance of a floating Oscillation Water Column (OWC)-type wave energy converter under abnormal oceanographic phenomenon such as large waves, wave impact force, deck wetness and complex motion of mooring system. Therefore, to choose a proper numerical method is important. This present paper describes a fundamental study about estimation of safety and performance of floating OWC-type wave energy converter using the two-phase flow MPS method. In this research, firstly, new algorithm is installed in order to solve problems of the two-phase flow MPS method. Secondly, applicability to an response analysis of a wharf installation type OWC-WEC of the improved MPS method is examined by wave pressure acting to the OWC-WEC and response in the air chamber of the OWC-WEC.


2021 ◽  
Vol 321 ◽  
pp. 03003
Author(s):  
Devesh Singh ◽  
Anoop Singh ◽  
Akshoy Ranjan Paul ◽  
Abdus Samad

The paper aims to design and simulation of a wave energy harvesting system commonly known as point absorber for Ennore port located in the coastal area of Chennai, India. The geographical condition of India, which is surrounded by the three sides with seas and ocean, has enormous opportunity for power production through wave energy harvesting system. The wave energy converter device is a two-body floating system and its both parts are connected by power take-off unit which acts as spring mass damper system. In this paper, the hydrodynamic diffraction, stability analysis, frequency, and time response analysis is carried out on ansys-aqwa. The numerical results are compared with the results obtained from the similar experiments for validation of CFD solver. Effects of the properties featuring wave characteristics including wave height and wave period of Ennore port on the energy conversion, Froude-Krylov and diffraction force, response amplitude operator (RAO) are studied. Based on the study, float diameter, draft, geometry, and varying damping coefficient for power generation are optimized. Finally, the optimally designed point absorber is simulated as per Indian ocean energy harvesting standard and mass of the system, heave dimension, diffraction forces, and pressure variations are computed.


2016 ◽  
Author(s):  
Anna Büchner ◽  
Thomas Knapp ◽  
Martin Bednarz ◽  
Philipp Sinn ◽  
Arndt Hildebrandt

The commercial CFD code ANSYS Fluent is used for the three-dimensional estimation of wave loads and the dynamic response of a floating single point wave energy converter of the SINN Power wave power plant due to non-breaking and unidirectional waves in coastal waters. The VoF method is used to model the free surface and wave theories to set up the boundary conditions at the inlet for regular waves. The wave induced vertical motions of the floating module are computed by a sixDoF solver. Preliminary 2D and 3D studies to set up boundary conditions, mesh densities and solver settings were performed. The numerical results were compared to analytical solutions in form of water surface elevations and wave kinematics which showed good agreement. The paper presents the dynamic response of the floating module for different load cases in terms of non-breaking waves. The resulting horizontal and vertical forces at the floating module will be presented and explained by the flow dynamics. Time and space depending velocities and pressure distributions including details on vortex separation will be given, which reveal valuable insights on the contribution of inertia and drag forces leading to the dynamic structural response of the floating devices.


Author(s):  
Spyros A. Mavrakos ◽  
George M. Katsaounis ◽  
Ioannis K. Chatjigeorgiou

The paper deals with the presentation of a model to predict performance characteristics of a tightly moored piston-like wave energy converter which is allowed to move in heave, pitch and sway modes of motion. The WEC’s piston-like arrangement consists of two floating concentric cylinders, the geometry of which allow the existence of a cylindrical moonpool between the external cylinder, the ‘torus’ and the inner cylinder, the ‘piston’. The first-order hydrodynamic characteristics of the floating device, i.e. exciting wave forces and hydrodynamic parameters, are evaluated using a linearized diffraction-radiation semi-analytical method of analysis that is suited for the type of bodies under consideration. According to the analysis method used, matched axisymmetric eigenfunction expansions of the velocity potentials in properly defined fluid regions around the body are introduced to solve the respective diffraction and radiation problems and to calculate the floats’ hydrodynamic characteristics in the frequency domain (Mavrakos et al. 2004, 2005). Based on these characteristics, the retardation forcing terms are calculated, which account for the memory effects of the motion. In this procedure, the coupling terms between the different modes of motion are properly formulated and taken into account (Cummins, 1962; Faltinsen, 1990). The floating WEC is connected to an underwater hydraulic cylinder that feeds a hydraulic system with pressurized oil. The performance of the system under the combined excitation of both first- and second order wave loads is here analyzed. To this end, the diffraction forces originated from the second order wave potentials are computed using a semi-analytical formulation which, by extension of the associated first-order solution, is based on matched axisymmetric eigenfunction expansions.


2018 ◽  
Vol 116 ◽  
pp. 356-366 ◽  
Author(s):  
Ryan G. Coe ◽  
Carlos Michelen ◽  
Aubrey Eckert-Gallup ◽  
Cédric Sallaberry

Sign in / Sign up

Export Citation Format

Share Document