Immunotherapy of breast cancer with an anti-idiotypic antibody mimicking a human cell substrate adhesion molecule in an in-vivo model

1997 ◽  
Vol 33 ◽  
pp. S43
Author(s):  
S. Köhler ◽  
H. Schlebusch ◽  
E. Coene ◽  
D. Nagel ◽  
Ch. DePotter ◽  
...  
1997 ◽  
Vol 33 ◽  
pp. S42
Author(s):  
P. Giffels ◽  
S. Köhler ◽  
Ch. DePotter ◽  
E. Coene ◽  
D. Nagel ◽  
...  

2015 ◽  
Vol 308 (8) ◽  
pp. C642-C649 ◽  
Author(s):  
B. N. Blackstone ◽  
R. Li ◽  
W. E. Ackerman ◽  
S. N. Ghadiali ◽  
H. M. Powell ◽  
...  

Breast cancer is the second leading cause of malignant death among women. A crucial feature of metastatic cancers is their propensity to lose adhesion to the underlying basement membrane as they transition to a motile phenotype and invade surrounding tissue. Attachment to the extracellular matrix is mediated by a complex of adhesion proteins, including integrins, signaling molecules, actin and actin-binding proteins, and scaffolding proteins. Focal adhesion kinase (FAK) is pivotal for the organization of focal contacts and maturation into focal adhesions, and disruption of this process is a hallmark of early cancer invasive potential. Our recent work has revealed that myoferlin (MYOF) mediates breast tumor cell motility and invasive phenotype. In this study we demonstrate that noninvasive breast cancer cell lines exhibit increased cell-substrate adhesion and that silencing of MYOF using RNAi in the highly invasive human breast cancer cell line MDA-MB-231 also enhances cell-substrate adhesion. In addition, we detected elevated tyrosine phosphorylation of FAK (FAKY397) and paxillin (PAXY118), markers of focal adhesion protein activation. Morphometric analysis of PAX expression revealed that RNAi-mediated depletion of MYOF resulted in larger, more elongated focal adhesions, in contrast to cells transduced with a control virus (MDA-231LVC cells), which exhibited smaller focal contacts. Finally, MYOF silencing in MDA-MB-231 cells exhibited a more elaborate ventral cytoskeletal structure near focal adhesions, typified by pronounced actin stress fibers. These data support the hypothesis that MYOF regulates cell adhesions and cell-substrate adhesion strength and may account for the high degree of motility in invasive breast cancer cells.


1989 ◽  
Vol 109 (2) ◽  
pp. 571-576 ◽  
Author(s):  
J D Zieske ◽  
G Bukusoglu ◽  
I K Gipson

A 110-115-kD protein is present at levels 27-fold higher in migratory epithelium in the rat cornea than in stationary epithelium. This protein represents 2.7% of the total protein in migratory epithelium 6-h postabrasion wound and 0.1% of the total protein in stationary epithelium. Our findings demonstrate that this 110-115-kD protein is vinculin. In Western blots comparing proteins from migratory and control epithelium, antibody against vinculin cross-reacted with the 110-115-kD protein. Using immunoslot blots, vinculin was determined to be present at maximal levels 6 h postabrasion wound, at levels 22- and 8-fold higher than control at 18 and 48 h, respectively, returning to control levels 72 h postwounding. Vinculin was also localized by indirect immunohistochemistry in migrating corneal epithelium. 3-mm scrape wounds were allowed to heal in vivo for 20 h. In flat mounts of these whole wounded corneas, vinculin was localized as punctate spots in the leading edge of migrating epithelium. In cryostat sections, vinculin was localized as punctate spots along the basal cell membranes of the migrating sheet adjacent to the basement membrane and in patches between cells as well as diffusely throughout the cell. Only very diffuse localization with occasional punctate spots between adjacent superficial cells was present in stationary epithelium. The increased synthesis of vinculin during migration and the localization of vinculin at the leading edge of migratory epithelium suggest that vinculin may be involved in cell-cell and cell-substrate adhesion as the sheet of epithelium migrates to cover a wound.


1997 ◽  
Vol 33 ◽  
pp. S42
Author(s):  
E. Coene ◽  
K. Willems ◽  
L. Verbiest ◽  
U. Wagner ◽  
H. Schlebusch ◽  
...  

1998 ◽  
Vol 141 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Catherine D. Nobes ◽  
Inger Lauritzen ◽  
Marie-Geneviève Mattei ◽  
Sonia Paris ◽  
Alan Hall ◽  
...  

Members of the Rho GTPase family regulate the organization of the actin cytoskeleton in response to extracellular growth factors. We have identified three proteins that form a distinct branch of the Rho family: Rnd1, expressed mostly in brain and liver; Rnd2, highly expressed in testis; and Rnd3/RhoE, showing a ubiquitous low expression. At the subcellular level, Rnd1 is concentrated at adherens junctions both in confluent fibroblasts and in epithelial cells. Rnd1 has a low affinity for GDP and spontaneously exchanges nucleotide rapidly in a physiological buffer. Furthermore, Rnd1 lacks intrinsic GTPase activity suggesting that in vivo, it might be constitutively in a GTP-bound form. Expression of Rnd1 or Rnd3/RhoE in fibroblasts inhibits the formation of actin stress fibers, membrane ruffles, and integrin-based focal adhesions and induces loss of cell–substrate adhesion leading to cell rounding (hence Rnd for “round”). We suggest that these proteins control rearrangements of the actin cytoskeleton and changes in cell adhesion.


2018 ◽  
Author(s):  
Dennis Klug ◽  
Sarah Goellner ◽  
Julia Sattler ◽  
Leanne Strauss ◽  
Jessica Kehrer ◽  
...  

AbstractCell-cell and cell-substrate adhesion is critical for many functions in life. In eukaryotes, I-domains mediate functions as divergent as tissue traversal by malaria-causing Plasmodium parasites as well as cell adhesion and migration by human leucocytes. The I-domain containing protein TRAP is important for Plasmodium sporozoite motility and invasion. Here we show that the I-domain of TRAP is required to mediate adhesional properties which can be partially preserved when the native I-domain is replaced by I-domains from human integrins or from an apicomplexan parasite that does not infect insects. By putting in vivo data and structural features in perspective we conclude that polyspecificity and positive charge around the ligand binding site of the I-domain are important for TRAP function. Our data suggest a highly preserved functionality of I-domains across eukaryotic evolution that is used by apicomplexan parasites to invade a broad range of tissues in a variety of hosts.


1989 ◽  
Vol 264 (14) ◽  
pp. 8012-8018 ◽  
Author(s):  
M Yamagata ◽  
S Suzuki ◽  
S K Akiyama ◽  
K M Yamada ◽  
K Kimata

Sign in / Sign up

Export Citation Format

Share Document