scholarly journals Enhancement of vinculin synthesis by migrating stratified squamous epithelium.

1989 ◽  
Vol 109 (2) ◽  
pp. 571-576 ◽  
Author(s):  
J D Zieske ◽  
G Bukusoglu ◽  
I K Gipson

A 110-115-kD protein is present at levels 27-fold higher in migratory epithelium in the rat cornea than in stationary epithelium. This protein represents 2.7% of the total protein in migratory epithelium 6-h postabrasion wound and 0.1% of the total protein in stationary epithelium. Our findings demonstrate that this 110-115-kD protein is vinculin. In Western blots comparing proteins from migratory and control epithelium, antibody against vinculin cross-reacted with the 110-115-kD protein. Using immunoslot blots, vinculin was determined to be present at maximal levels 6 h postabrasion wound, at levels 22- and 8-fold higher than control at 18 and 48 h, respectively, returning to control levels 72 h postwounding. Vinculin was also localized by indirect immunohistochemistry in migrating corneal epithelium. 3-mm scrape wounds were allowed to heal in vivo for 20 h. In flat mounts of these whole wounded corneas, vinculin was localized as punctate spots in the leading edge of migrating epithelium. In cryostat sections, vinculin was localized as punctate spots along the basal cell membranes of the migrating sheet adjacent to the basement membrane and in patches between cells as well as diffusely throughout the cell. Only very diffuse localization with occasional punctate spots between adjacent superficial cells was present in stationary epithelium. The increased synthesis of vinculin during migration and the localization of vinculin at the leading edge of migratory epithelium suggest that vinculin may be involved in cell-cell and cell-substrate adhesion as the sheet of epithelium migrates to cover a wound.

1997 ◽  
Vol 33 ◽  
pp. S42
Author(s):  
P. Giffels ◽  
S. Köhler ◽  
Ch. DePotter ◽  
E. Coene ◽  
D. Nagel ◽  
...  

1998 ◽  
Vol 141 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Catherine D. Nobes ◽  
Inger Lauritzen ◽  
Marie-Geneviève Mattei ◽  
Sonia Paris ◽  
Alan Hall ◽  
...  

Members of the Rho GTPase family regulate the organization of the actin cytoskeleton in response to extracellular growth factors. We have identified three proteins that form a distinct branch of the Rho family: Rnd1, expressed mostly in brain and liver; Rnd2, highly expressed in testis; and Rnd3/RhoE, showing a ubiquitous low expression. At the subcellular level, Rnd1 is concentrated at adherens junctions both in confluent fibroblasts and in epithelial cells. Rnd1 has a low affinity for GDP and spontaneously exchanges nucleotide rapidly in a physiological buffer. Furthermore, Rnd1 lacks intrinsic GTPase activity suggesting that in vivo, it might be constitutively in a GTP-bound form. Expression of Rnd1 or Rnd3/RhoE in fibroblasts inhibits the formation of actin stress fibers, membrane ruffles, and integrin-based focal adhesions and induces loss of cell–substrate adhesion leading to cell rounding (hence Rnd for “round”). We suggest that these proteins control rearrangements of the actin cytoskeleton and changes in cell adhesion.


2018 ◽  
Author(s):  
Dennis Klug ◽  
Sarah Goellner ◽  
Julia Sattler ◽  
Leanne Strauss ◽  
Jessica Kehrer ◽  
...  

AbstractCell-cell and cell-substrate adhesion is critical for many functions in life. In eukaryotes, I-domains mediate functions as divergent as tissue traversal by malaria-causing Plasmodium parasites as well as cell adhesion and migration by human leucocytes. The I-domain containing protein TRAP is important for Plasmodium sporozoite motility and invasion. Here we show that the I-domain of TRAP is required to mediate adhesional properties which can be partially preserved when the native I-domain is replaced by I-domains from human integrins or from an apicomplexan parasite that does not infect insects. By putting in vivo data and structural features in perspective we conclude that polyspecificity and positive charge around the ligand binding site of the I-domain are important for TRAP function. Our data suggest a highly preserved functionality of I-domains across eukaryotic evolution that is used by apicomplexan parasites to invade a broad range of tissues in a variety of hosts.


1989 ◽  
Vol 264 (14) ◽  
pp. 8012-8018 ◽  
Author(s):  
M Yamagata ◽  
S Suzuki ◽  
S K Akiyama ◽  
K M Yamada ◽  
K Kimata

1992 ◽  
Vol 118 (5) ◽  
pp. 1235-1244 ◽  
Author(s):  
M H Symons ◽  
T J Mitchison

Cell-substrate adhesion is crucial at various stages of development and for the maintenance of normal tissues. Little is known about the regulation of these adhesive interactions. To investigate the role of GTPases in the control of cell morphology and cell-substrate adhesion we have injected guanine nucleotide analogs into Xenopus XTC fibroblasts. Injection of GTP gamma S inhibited ruffling and increased spreading, suggesting an increase in adhesion. To further investigate this, we made use of GRGDSP, a peptide which inhibits binding of integrins to vitronectin and fibronectin. XTC fibroblasts injected with non-hydrolyzable analogs of GTP took much more time to round up than mock-injected cells in response to treatment with GRGDSP, while GDP beta S-injected cells rounded up in less time than controls. Injection with GTP gamma S did not inhibit cell rounding induced by trypsin however, showing that cell contractility is not significantly affected by the activation of GTPases. These data provide evidence for the existence of a GTPase which can control cell-substrate adhesion from the cytoplasm. Treatment of XTC fibroblasts with the phorbol ester 12-o-tetradecanoylphorbol-13-acetate reduced cell spreading and accelerated cell rounding in response to GRGDSP, which is essentially opposite to the effect exerted by non-hydrolyzable GTP analogs. These results suggest the existence of at least two distinct pathways controlling cell-substrate adhesion in XTC fibroblasts, one depending on a GTPase and another one involving protein kinase C.


1986 ◽  
Vol 103 (5) ◽  
pp. 1679-1687 ◽  
Author(s):  
M C Beckerle

A new protein found at sites of cell-substrate adhesion has been identified by analysis of a nonimmune rabbit serum. By indirect immunofluorescence this serum stains focal contacts (adhesion plaques) and the associated termini of actin filament bundles in cultured chicken cells. Western immunoblot analysis of total chick embryo fibroblast protein demonstrated an 82-kD polypeptide to be the major protein recognized by the unfractionated serum. This 82-kD protein is immunologically distinct from other known adhesion plaque proteins such as vinculin, talin, alpha-actinin, and fimbrin. Antibody affinity-purified against the electrophoretically isolated, nitrocellulose-bound 82-kD protein retained the ability to stain the area of the adhesion plaque, which confirms that the 82-kD protein is indeed a constituent of the focal contact. The 82-kD polypeptide has a basic isoelectric point relative to actin and fibronectin, and it appears to be very low in abundance. The 82-kD protein is ubiquitous in chicken embryo tissues. However, it appears to be more abundant in fibroblasts and smooth muscle than in brain or liver. Intermediate levels of the protein were detected in skeletal and cardiac muscle. The subcellular distribution of the 82-kD protein raises the possibility that this polypeptide is involved in linking actin filaments to the plasma membrane at sites of substrate attachment or regulating these dynamic interactions.


Sign in / Sign up

Export Citation Format

Share Document