scholarly journals Multiresolution diffusion entropy analysis of time series: an application to births to teenagers in Texas

2004 ◽  
Vol 20 (1) ◽  
pp. 179-185 ◽  
Author(s):  
Nicola Scafetta ◽  
Bruce J. West
Author(s):  
N. Scafetta ◽  
P. Grigolin

A complex process is often a balance between nonscaling and scaling components. We show how the nonextensive Tsallis g-entropy indicator may be interpreted as a measure of the nonscaling condition in time series. This is done by applying the nonextensive entropy formalism to the diffusion entropy analysis (DEA). We apply the analysis to the study of the teen birth phenomenon. We find that the number of unmarried teen births is strongly influenced by social processes that induce an anomalous memory in the data. This memory is related to the strength of the nonscaling component of the signal and is more intense than that in the married teen birth time series. By using a wavelet multiresolution analysis, we attempt to provide a social interpretation of this effect…. One of the most exciting and rapidly developing areas of modern research is the quantitative study of "complexity." Complexity has special interdisciplinary impacts in the fields of physics, mathematics, information science, biology, sociology, and medicine. No definition of a complex system has been universally embraced, so here we adopt the working definition, "an arrangement of parts so intricate as to be hard to understand or deal with." Therefore, the main goal of the science of complexity is to develop mathematical methods in order to discriminate among the fundamental microscopic and macroscopic constituents of a complex system and to describe their interrelations in a concise way. Experiments usually yield results in the form of time series for physical observables. Typically, these time series contain both a slow regular variation, usually called a "signal," and a rapid erratic fluctuation, usually called "noise." Historically, the techniques applied to processing such time series have been based on equilibrium statistical mechanics and, therefore, they are not applicable to phenomena far from equilibrium. Among the fluctuating phenomena, a particularly important place is occupied by those phenomena characterized by some type of self-similar or scaling-fractal structures [4]. In this chapter we show that the nonextensive Tsallis g-entropy indicator may be interpreted as a measure of the strength of the nonscaling component of a time series.


1998 ◽  
Vol 2 ◽  
pp. 141-148
Author(s):  
J. Ulbikas ◽  
A. Čenys ◽  
D. Žemaitytė ◽  
G. Varoneckas

Variety of methods of nonlinear dynamics have been used for possibility of an analysis of time series in experimental physiology. Dynamical nature of experimental data was checked using specific methods. Statistical properties of the heart rate have been investigated. Correlation between of cardiovascular function and statistical properties of both, heart rate and stroke volume, have been analyzed. Possibility to use a data from correlations in heart rate for monitoring of cardiovascular function was discussed.


1984 ◽  
Vol 30 (104) ◽  
pp. 66-76 ◽  
Author(s):  
Paul A. Mayewski ◽  
W. Berry Lyons ◽  
N. Ahmad ◽  
Gordon Smith ◽  
M. Pourchet

AbstractSpectral analysis of time series of a c. 17 ± 0.3 year core, calibrated for total ß activity recovered from Sentik Glacier (4908m) Ladakh, Himalaya, yields several recognizable periodicities including subannual, annual, and multi-annual. The time-series, include both chemical data (chloride, sodium, reactive iron, reactive silicate, reactive phosphate, ammonium, δD, δ(18O) and pH) and physical data (density, debris and ice-band locations, and microparticles in size grades 0.50 to 12.70 μm). Source areas for chemical species investigated and general air-mass circulation defined from chemical and physical time-series are discussed to demonstrate the potential of such studies in the development of paleometeorological data sets from remote high-alpine glacierized sites such as the Himalaya.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 245
Author(s):  
Ildoo Kim

Multiscale sample entropy analysis has been developed to quantify the complexity and the predictability of a time series, originally developed for physiological time series. In this study, the analysis was applied to the turbulence data. We measured time series data for the velocity fluctuation, in either the longitudinal or transverse direction, of turbulent soap film flows at various locations. The research was to assess the feasibility of using the entropy analysis to qualitatively characterize turbulence, without using any conventional energetic analysis of turbulence. The study showed that the application of the entropy analysis to the turbulence data is promising. From the analysis, we successfully captured two important features of the turbulent soap films. It is indicated that the turbulence is anisotropic from the directional disparity. In addition, we observed that the most unpredictable time scale increases with the downstream distance, which is an indication of the decaying turbulence.


Sign in / Sign up

Export Citation Format

Share Document