The effect of lamellar spacing on the creep behavior of a fully lamellar TiAl alloy

2000 ◽  
Vol 8 (5-6) ◽  
pp. 525-529 ◽  
Author(s):  
C.E. Wen ◽  
K. Yasue ◽  
J.G. Lin ◽  
Y.G. Zhang ◽  
C.Q. Chen
2011 ◽  
Vol 335-336 ◽  
pp. 774-778
Author(s):  
Xia Chang ◽  
Xiao Bin Zhang ◽  
Ji Zhang

The article presents the results of optical microscopy, scanning electron microscopy (SEM), Transmission Electron Microscope (TEM) conducted on a Ti–46.5Al–2.5V-1.0Cr–0.3Ni alloy before and after different heat treatments. Heat treatment of the alloy at 1340°C followed by cooling leads to the formation of the fully lamellar microstructure which consists of γ lamellae mostly and of small amount of α2 lamellae. The cooling rate of 50°C/min in alloy tcx1-G produced an optimal microstructure. This cooling rate generated finest lamellae with the smallest individual lamella spacing among the alloys.


2019 ◽  
Vol 114 ◽  
pp. 106611 ◽  
Author(s):  
Michael Burtscher ◽  
Thomas Klein ◽  
Svea Mayer ◽  
Helmut Clemens ◽  
Franz Dieter Fischer

2000 ◽  
Vol 646 ◽  
Author(s):  
Wolfram Schillinger ◽  
Dezhi Zhang ◽  
Gerhard Dehm ◽  
Arno Bartels ◽  
Helmut Clemens

ABSTRACTγ-T1AI (Cr, Mo, Si, B) specimens with two different fine lamellar microstructures were produced by vacuum arc melting followed by a two-stage heat treatment. The average lamellar spacing was determined to be 200 nm and 25–50 nm, respectively. Creep tests at 700°C showed a very strong primary creep for both samples. After annealing for 24 hours at 1000 °C the primary creep for both materials is significantly decreased. The steady-state creep for the specimens with the wider lamellar spacing appears to be similar to the creep behavior prior to annealing while the creep rate of the material with the previously smaller lamellar spacing is significantly higher. Optical microscopy and TEM-studies show that the microstructure of the specimens with the wider lamellar specing is nearly unchanged, whereas the previously finer material was completely recrystallized to a globular microstructure with a low creep resistance. The dissolution of the fine lamellar microstructure was also observed during creep tests at 800 °C as manifested in an acceleration of the creep rate. It is concluded that extremely fine lamellar microstructures come along with a very high dislocation density and internal stresses which causes the observed high primary creep. The microstructure has a composition far away from the thermodynamical equilibrium which leads to a dissolution of the structure even at relatively low temperatures close to the intended operating temperature of γ-T1AI structural parts. As a consequence this limits the benefit of fine lamellar microstructures on the creep behavior.


2001 ◽  
Vol 36 (9) ◽  
pp. 1737-1742 ◽  
Author(s):  
Jiancheng Tang ◽  
Baiyun Huang ◽  
Kechao Zhou ◽  
Wensheng Liu ◽  
Yuehui He ◽  
...  

10.2172/46701 ◽  
1995 ◽  
Author(s):  
J.N. Wang ◽  
A.J. Schwartz ◽  
T.G. Nieh ◽  
C.T. Liu ◽  
V.K. Sikka ◽  
...  

2008 ◽  
Vol 23 (4) ◽  
pp. 949-953 ◽  
Author(s):  
J.P. Cui ◽  
M.L. Sui ◽  
Y.Y. Cui ◽  
D.X. Li

Instead of conventional grain-refinement treatments for improving the ductility of fully lamellar TiAl alloys, multiorientational, lamellar, subcolony refinement with good ductility has been achieved simply by using an electric-current pulse treatment. The microstructural refinement mechanism is attributed to the transformation on heating of γ laths in the prior large-grain lamellar structure to Widmanstätten α in several orientations, which on subsequent cooling forms lamellar structure colonies in multiple orientations. This kind of refined multiple-colony lamellar structure was found to enhance the ductility of the TiAl alloy.


Sign in / Sign up

Export Citation Format

Share Document