Ductile TiAl alloy with a Widmanstätten lamellar structure formed by rapid heating

2008 ◽  
Vol 23 (4) ◽  
pp. 949-953 ◽  
Author(s):  
J.P. Cui ◽  
M.L. Sui ◽  
Y.Y. Cui ◽  
D.X. Li

Instead of conventional grain-refinement treatments for improving the ductility of fully lamellar TiAl alloys, multiorientational, lamellar, subcolony refinement with good ductility has been achieved simply by using an electric-current pulse treatment. The microstructural refinement mechanism is attributed to the transformation on heating of γ laths in the prior large-grain lamellar structure to Widmanstätten α in several orientations, which on subsequent cooling forms lamellar structure colonies in multiple orientations. This kind of refined multiple-colony lamellar structure was found to enhance the ductility of the TiAl alloy.

2007 ◽  
Vol 539-543 ◽  
pp. 1451-1456 ◽  
Author(s):  
Z.X. Li ◽  
Xia Huang ◽  
L.C. Qi ◽  
Chun Xiao Cao

The beneficial effects of boron addition on microstructure transformations and mechanical properties of γ-TiAl alloys were investigated. Two growth mechanisms of boride (TiB2) in γ-TiAl alloy were confirmed, the curved flaky borides are products of irregular eutectic reaction growing coupled with matrix, while some faceted blocky borides in boron-rich alloy are primary TiB2 phase growing directly in melt. The core of flaky TiB2 is ultra-fine B2 phase and there has an orientation relationship [1210] TiB2//[001]B2, (1010) //(010)B2. In addition to the well-known grain refinement effect, boron addition can suppress the formation of metastable feathery and Widmastätten structure and broadens cooling-rate-range for the formation of fully lamellar structure, consequently, it improves thermal stability of the lamellar structure and accordingly prolongs the creep rupture life significantly. Another beneficial effect of boron addition is that boride can restrain discontinuous coarsening on lamellar grain boundary by pinning action and accelerates recrystallization of γ grain by introducing TiB2/matrix interfaces as nuclear sites during homogeneous treatment at 1150°C. Therefore, compared with boron-free alloy more homogeneous and refined near γ microstructure can be obtained in boron modified alloy.


2013 ◽  
Vol 747-748 ◽  
pp. 38-43 ◽  
Author(s):  
Li Hua Chai ◽  
Liang Yang ◽  
Jian Peng Zhang ◽  
Zhi Yong Zhang ◽  
Lai Qi Zhang ◽  
...  

High Nb containing TiAl alloys have been investigated traditionally as potential high temperature structural materials because of their high strength, good oxidation and creep resistance. However, the poor ductility and fracture toughness at room temperature limit their application, which could be improved by controlling microstructure to get refine and homogeneous fully lamellar structure. In this study, a high Nb containing TiAl alloy alloying Mn, B and Y with refined microstructure was produced. The solidification path was analyzed by DSC and SEM microstructure of the alloy was observed, after heating at a certain temperature for 1-24hrs and then quenching in water. The dissolution of β phase was also investigated. The results showed that the β phase could decompose only by heating in single β or near α phase field.


2007 ◽  
Vol 539-543 ◽  
pp. 1525-1530
Author(s):  
Han Liang Zhu ◽  
Dong Yi Seo ◽  
Kouichi Maruyama ◽  
Peter Au

Fine-grained fully lamellar (FGFL) structures of XD TiAl alloys (Ti-45 and 47Al-2Nb-2Mn+0.8vol.%TiB2) (at.%) were stabilized to varying degrees by different aging treatments. Specimens with and without aging were creep tested at 760°C and 207 MPa. It was found that during creep deformation, degradation of the lamellar structure involving coarsening within the colonies and spheroidization at colony boundaries occurred, forming fine globular structures at the colony boundaries and increasing the creep rate. Aging treatments stabilized the lamellar structure and retarded the coarsening and spheroidization processes during creep deformation. As a result, the aged specimens exhibited lower minimum creep rates and longer creep lives than the unaged specimens. A multiple step aging stabilized the lamellar structure to the greatest extent and suppressed other degradation processes during aging, resulting in the best creep resistance. These results demonstrate that the multiple step aging is the optimal aging condition for stabilizing FGFL XD TiAl alloys.


2011 ◽  
Vol 308-310 ◽  
pp. 796-799 ◽  
Author(s):  
Yu Yong Chen ◽  
Yong Jun Su ◽  
Fan Tao Kong ◽  
De Liang Zhang

Ti-43Al-5V-4Nb (at.%) intermetallic compounds with fully lamellar structure were fabricated by forging method without canning using the blended elemental powders. The process route consisted of powder blending, compacting, sintering and final fabrication by hot forging. During sintering, there existed expansion, which is detrimental to forging process. In order to overcome the difficulty, two-step forging was introduced. The total reduction of two-step forging was up to 65%. Nearly fully lamellar structure of TiAl alloy was obtained. Overall, an optimized and potentially lower cost processing route could be identified.


2005 ◽  
Vol 475-479 ◽  
pp. 581-584 ◽  
Author(s):  
H. Zhu ◽  
Dong Yi Seo ◽  
Kouichi Maruyama

The effect of heat treatment on microstructure and property of Ti-45 and 47Al-2Nb-2Mn+0.8%vol.%TiB2 alloys (45XD and 47XD) has been studied. Annealing and subsequent oil quench produced fine-grained fully lamellar structure (FGFL) in both alloys. For microstructural stabilization, the FGFL structures were subjected to different aging treatments. Microstructural examination showed that degradation of the FGFL structure, such as coarsening of γ lamellae, recrystallization of γ grains and break-up of a2 lamellae, presented to varying degrees after different aging treatments. Hardness values in the aged alloys decreased due to the degradation. The creep resistances were improved in the aged alloys though the degradation occurred, indicating that the aging treatments stabilized the FGFL structures effectively. The differences in the changes of properties caused by different aging treatments and compositions were compared in combination with the microstructural variants.


2002 ◽  
Vol 329-331 ◽  
pp. 774-779 ◽  
Author(s):  
T Matsuo ◽  
T Nozaki ◽  
T Asai ◽  
M Takeyama

Sign in / Sign up

Export Citation Format

Share Document