The Arctic Ocean Boundary Current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from moored instruments

2001 ◽  
Vol 48 (8) ◽  
pp. 1757-1792 ◽  
Author(s):  
Rebecca A Woodgate ◽  
Knut Aagaard ◽  
Robin D Muench ◽  
John Gunn ◽  
Göran Björk ◽  
...  
2000 ◽  
Vol 25 (1) ◽  
pp. 77-99 ◽  
Author(s):  
Bert Rudels ◽  
Robin D Muench ◽  
John Gunn ◽  
Ursula Schauer ◽  
Hans J Friedrich

2009 ◽  
Vol 472 (1-4) ◽  
pp. 309-322 ◽  
Author(s):  
A.E. Langinen ◽  
N.N. Lebedeva-Ivanova ◽  
D.G. Gee ◽  
Yu.Ya. Zamansky

2019 ◽  
Author(s):  
Susanne Kraemer ◽  
Arthi Ramachandran ◽  
David Colatriano ◽  
Connie Lovejoy ◽  
David A. Walsh

AbstractThe Arctic Ocean is relatively isolated from other oceans and consists of strongly stratified water masses with distinct histories, nutrient, temperature and salinity characteristics, therefore providing an optimal environment to investigate local adaptation. The globally distributed SAR11 bacterial group consists of multiple ecotypes that are associated with particular marine environments, yet relatively little is known about Arctic SAR11 diversity. Here, we examined SAR11 diversity using ITS analysis and metagenome-assembled genomes (MAGs). Arctic SAR11 assemblages were comprised of the S1a, S1b, S2, and S3 clades, and structured by water mass and depth. The fresher surface layer was dominated by an ecotype (S3-derived P3.2) previously associated with Arctic and brackish water. In contrast, deeper waters of Pacific origin were dominated by the P2.3 ecotype of the S2 clade, within which we identified a novel subdivision (P2.3s1) that was rare outside the Arctic Ocean. Arctic S2-derived SAR11 MAGs were restricted to high latitudes and included MAGs related to the recently defined S2b subclade, a finding consistent with bi-polar ecotypes and Arctic endemism. These results place the stratified Arctic Ocean into the SAR11 global biogeography and have identified SAR11 lineages for future investigation of adaptive evolution in the Arctic Ocean.


2009 ◽  
Vol 24 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. D. Gleason ◽  
D. J. Thomas ◽  
T. C. Moore ◽  
J. D. Blum ◽  
R. M. Owen ◽  
...  

2019 ◽  
Vol 7 (10) ◽  
pp. 385
Author(s):  
Yunyun Fu ◽  
Richard B. Rivkin ◽  
Andrew S. Lang

The Arctic Ocean is one of the least well-studied marine microbial ecosystems. Its low-temperature and low-salinity conditions are expected to result in distinct bacterial communities, in comparison to lower latitude oceans. However, this is an ocean currently in flux, with climate change exerting pronounced effects on sea-ice coverage and freshwater inputs. How such changes will affect this ecosystem are poorly constrained. In this study, we characterized the bacterial community compositions at different depths in both coastal, freshwater-influenced, and pelagic, sea-ice-covered locations in the Beaufort Sea in the western Canadian Arctic Ocean. The environmental factors controlling the bacterial community composition and diversity were investigated. Alphaproteobacteria dominated the bacterial communities in samples from all depths and stations. The Pelagibacterales and Rhodobacterales groups were the predominant taxonomic representatives within the Alphaproteobacteria. Bacterial communities in coastal and offshore samples differed significantly, and vertical water mass segregation was the controlling factor of community composition among the offshore samples, regardless of the taxonomic level considered. These data provide an important baseline view of the bacterial community in this ocean system that will be of value for future studies investigating possible changes in the Arctic Ocean in response to global change and/or anthropogenic disturbance.


2020 ◽  
Vol 117 (42) ◽  
pp. 26069-26075
Author(s):  
Anne de Vernal ◽  
Claude Hillaire-Marcel ◽  
Cynthia Le Duc ◽  
Philippe Roberge ◽  
Camille Brice ◽  
...  

The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.


2018 ◽  
Vol 45 (23) ◽  
Author(s):  
Yuxin Ma ◽  
Dave A. Adelman ◽  
Eduard Bauerfeind ◽  
Ana Cabrerizo ◽  
Carrie A. McDonough ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document